Wednesday, December 10, 2008

Fitur Baru dari "Dunia Listrik"

saat ini dunia-listrik.blogspot.com telah dilengkapi dengan fitur download, insya allah kedepannya, fitur tersebut akan diisi dengan tutorial atau handbook teknik elektro dan software atau program-program yang terkait dengan dunia kelistrikan.

Diharapkan dengan fitur yang baru tersebut dapat menambah wawasan kita tentang dunia kelistrikan.

saya mengharapkan masukan dan saran dari rekan-rekan pembaca sekalian, agar blog ini dapat lebih baik...silahkan hubungi saya di: dunia.listrik[at]gmail[dot]com.

Dasar-Dasar Elektromekanik

1. Konversi Energi Elektromekanik

Konversi energi baik dari energi listrik menjadi energi mekanik (motor) maupun sebaliknya dari energi mekanik menjadi energi listrik (generator) berlangsung melalui medium medan magnet. Energi yang akan diubah dari satu sistem ke sistem lainnya, sementara akan tersimpan pada medium medan magnet untuk kemudian dilepaskan menjadi energi sistem lainnya. Dengan demikian, medan magnet selain berfungsi sebagai tempat penyimpanan energi juga sekaligus sebagai medium untuk mengkopel perubahan energi.

Dengan mengingat hukum kekekalan energi, proses konversi energi elektromekanik dapat dinyatakan sebagai berikut (untuk motor):

(Energi Listrik sebagai input) = (Energi Mekanik sebagai output + Energi panas) + (Energi pada medan magnet dan rugi-rugi magnetic)

atau dalam persamaan differensial, konversi energi dari elektris ke mekanis adalah sebagai berikut:

dWE = dWM + dWF

Ini hanya berlaku ketika proses konversi energi sedang berlangsung pada keadaan dinamis yang transient. Untuk keadaan tunak, dimana fluks merupakan harga yang konstan, maka;

dWF = 0

dWE = dWM

2. Gaya Gerak Listrik

Apabila sebuah konduktor digerakkan tegak lurus sejauh ds memotong suatu medan magnet dengan kerapatan fluks B, maka perubahan fluks pada konduktor dengan panjang efektif l adalah:

dO = B l ds

Dari Hukum Faraday diketahui bahwa gaya gerak listrik (ggl)

E = d/dt

Maka e = B l ds/dt; dimana ds/dt = v = kecepatan

Jadi, e = B l v

3. Kopel

Arus listrik I yang dihasilkan di dalam suatu medan magnet dengan kerapatan fluks B akan menghasilkan suatu gaya F sebesar:

F = B I l

Jika jari-jari rotor adalah r, maka kopel yang dibangkitkan adalah

T = F r

Perlu diingat bahwa saat gaya F dibangkitkan, konduktor bergerak di dalam medan magnet da seperti diketahui akan menimbulkan gaya gerak listrik yang merupakan reaksi (lawan) terhadap tegangan penyebabnya. Agar proses konversi energi listrik menjadi energi mekanik (motor) dapat berlangsung, tegangan sumber harus lebih besar daripada gaya gerak listrik lawan.

Begitu pula, suatu gerak konduktor di dalam medan magnet akan membangkitkan tegangan e = B l V dan bila dihubungkan dengan beban, akan mengalir arus listrik I atau energi mekanik berubah menjadi energi listrik (generator). Arus listrik yang mengalir pada konduktor tadi merupakan medan magnet pula dan akan berinteraksi dengan medan magnet yang telah ada (B). Interaksi medan magnet merupakan gaya reaksi (lawan) terhadap gerak mekanik yang diberikan. Agar konversi energi mekanik ke energi listrik dapat berlangsung, energi mekanik yang diberikan haruslah lebih besar dari gaya reaksi tadi.

4. Mesin Dinamik Elementer

Pada umumnya mesin dinamik terdiri atas bagian yang berputar disebut rotor dan bagian yang diam disebut stator. Di antara rotor dan stator terdapat celah udara. Stator merupakan kumparan medan yang berbentuk kutub sepatu dan rotor merupakan kumparan jangkar dengan belitan konduktor yang saling dihubungkan ujungnya (lihat gambar) untuk mendapatkan tegangan induksi (ggl).

Jika kumparan rotor diputar dengan arah berlawanan dari arah jarum jam, tegangan akan dibangkitkan dengan arah yang berlawanan pada kedua ujung rotor yang tidak dihubungkan.

5. Interaksi Medan Magnet

Kerja suatu mesin dinamis dapat juga dilihat dari segi adanya interaksi antar medan magnet stator dan rotor, yaitu:

F = B I l

Seperti diketahui, arus listrik (I) pada persamaan di atas akan menimbulkan fluks juga di sekitar konduktor yang dilalui. Bila kerapatan fluks akibat arus listrik dinyatakan dengan Bs (pada stator), sedang kerapatan fluks akibat kumparan medan adalah Br (pada rotor), maka dapat dituliskan:

T = K Br Bs sin 

Dimana
 adalah sudut antara kedua sumbu medan magnet Br dan Bs
K adalah konstanta l x r
Sudut  dikenal sebagai sudut kopel atau sudut daya dengan harga maksimum  = 90o.

Dengan menganggap Br dan Bs sebagai fungsi arus rotor dan arus stator, persamaan kopel menjadi:

T = K Ir Is sin 

Dengan demikian, kopel terjadi sebagai interaksi antara dua medan magnet atau dua arus.

6. Derajat Listrik

Pada setiap satu kali putaran mesin, tegangan induksi yang ditimbulkan sudah menyelesaikan p/2 kali putaran. Maka untuk mesin 4 kutub, satu kali putaran mekanik mesin (360o) berarti sama dengan dua kali putaran listrik (720o). Persamaan umumnya adalah sebagai berikut:

e = (p/2) m
p = jumlah kutub mesin
e = sudut listrik
m = sudut mekanik

7. Frekuensi

Dari persamaan di atas, diketahui bahwa untuk setiap satu siklus tegangan listrik yang dihasilkan, mesin telah menyelesaikan p/2 kali putaran. Karena itu frekuensi gelombang tegangan adalah:

f = (p/2)x(n/60)

dimana;
n = rotasi per menit
n/60 = rotasi perdetik

Kecepatan sinkron untuk mesin arus bolak-balik lazim dinyatakan dengan

ns = 120 (f/p)

Jadi misalnya untuk generator sinkron yang bekerja dengan frekuensi 50 putaran per detik dan mempunyai jumlah kutub p=2, maka kecepatan berputar mesin tersebut adalah:
ns = (120 x 50)/2 = 3000 rpm.

refrerensi:
Dasar Teknik Tenaga Listrik dan Elektronika Daya – ZUHAL

Untuk pembahasan tingkat lanjut, silahkan baca artikelnya di sini dan sini

Sunday, December 7, 2008

Proses Penyampaian Energi Listrik

Karena berbagai persoalan teknis, energi listrik hanya dibangkitkan pada tempat-tempat tertentu saja. Sedangkan pemakai tenaga listrik atau pelanggan tenaga listrik tersebar diberbagai tempat, maka penyampaiain tenaga listrik dari tempat dibangkitkan sampai ke tempat pelanggan, memerlukan berbagai penanganan teknis. Tenaga listrik dibangkitkan dalam Pusat-pusat Listrik seperti PLTA, PLTU, PLTG, PLTP, PLTGU dan PLTD, kemudian disalurkan melalui saluran transmisi setelah terlebih dahulu dinaikkan tegangannya oleh transformator penaik tegangan yang ada dipusat listrik.

Saluran tegangan tinggi di Indonesia mempunyai tegangan 150 kV yang disebut sebagai Saluran Udara Tegangan Tinggi (SUTT) dan tegangan 500 kV yang disebut sebagai Saluran Udara Tegangan Ekstra Tinggi (SUTET). Saluran transmisi ada yang berupa saluran udara dan ada pula yang berupa kabel tanah. Karena saluran udara harganya jauh lebih murah dibandingkan dengan kabel tanah, maka saluran transamisi kebanyakkan berupa saluran udara.

Kerugian saluran transmisi menggunakan kabel udara adalah adanya gangguan petir., kena pohon dan lain-lain. Setelah tenaga listrik disalurkan melalui saluran transmisi, maka sampailah tenaga listrik di Gardu Induk (GI) untuk diturunkan tegangannya melalui transformator penurun tegangan menjadi tegangan menengah atau yang juga disebut tegangan distribusi primer. Tegangan distribusi primer yang digunakan pada saat ini adalah tegangan 20 kV. Jaringan setelah keluar dari GI disebut jaringan distribusi, sedangkan jaringan antara Pusat Listrik dengan GI disebut jaringan transmisi.

Setelah tenaga listrik disalurkan melalui jaringan distribusi primer, maka kemudian tenaga listrik diturunkan tegangannya dalam gardu-gardu distribusi menjadi tegangan rendah dengan tegangan kerja 380/220 Volt, kemudian disalurkan melalui Jaringan Tegangan Rendah untuk selanjutnya disalurkan ke rumah-rumah pelanggan (konsumen) melalui Sambungan Rumah. Dalam prakteknya, karena luasnya jaringan distribusi, sehingga diperlukan banyak transformator distribusi, maka Gardu Distribusi seringkali disederhanakan menjadi transformator tiang. Pelanggan yang mempunyai daya tersambung besar tidak dapat disambung melalui Jaringan Tegangan Rendah, melainkan disambung langsung pada Jaringan Tegangan Menengah, bahkan ada pula yang disambung pada jaringan Transmisi Tegangan Tinggi, tergantung besarnya daya tersambung. Setelah tenaga listrik melalui Jaringan Tegangan Menengah (JTM), Jaringan Tegangan Rendah (JTR) dan Sambungan Rumah, maka tenaga listrik selanjutnya melalui alat pembatas daya dan KWH meter.

Dari uraian diatas, dapat dimengerti bahwa besar kecilnya konsumsi tenaga listrik ditentukan sepenuhnya oleh para pelanggan, yaitu tergantung bagaimana para pelanggan akan menggunakan alat-alat listriknya, yang harus diikuti besarnya suplai tenaga listrik dari Pusat-pusat Listrik. Proses penyampaian tenag a listrik dari Pusat-pusat Listrik ditunjukkan dalam Gambar dibawah ini.


Cara Hemat Listrik - 2

Pengaturan Pemakaian Tenaga Listrik

Pengaturan pemakaian energi listrik pada dasarnya adalah suatu kegiatan masyarakat pelanggan listrik untuk mengubah perilaku agar menggunakan tenaga listrik secara efisien, baik besaran maupun waktunya, sehingga dapat memberikan manfaat bagi pelanggan itu sendiri, perusahaan listrik, maupun masyarakat pengguna tenaga listrik pada umumnya.

Manfaat pengaturan pemakaian energi listrik bagi perusahaan listrik adalah :
1. Dapat mengurangi biaya bahan bakar, biaya operasi dan biaya pemeliharaan.
2. Dapat menunda pembangunan pembangkit listrik dan jaringan listrik dalam rangka memenuhi pertumbuhan permintaan tenaga listrik.
3. Dapat tetap menjaga ketersediaan pasokan tenaga listrik, karena kapasitas yang mampu melayani permintaan tenaga listrik dapat dihemat.

Manfaat pengaturan pemakaian energi listrik bagi pengguna tenaga listrik adalah :
1. Dapat menghindari pemadaman bergilir yang dikarenakan ketidakmampuan pusat listrik untuk
mensuplai tenaga listrik sesuai permintaan. Hal ini terjadi pada saat permintaan tenaga listrik secara bersamaan pada waktu tertentu yang sering disebut sebagai waktu beban puncak.
2. Dapat menghemat sumber daya alam, dimana bahan bakar yang diproduksi dari alam dan tidak dapat diperbaharui dapat dihemat.
3. Dapat memberikan kesempatan penyediaan tenaga listrik bagi masyarakat yang belum menikmati tenaga listrik. Sebab dengan pengurangan pemakaian tenaga listrik, berarti ada sisa

Metode Pengaturan Pemakaian Tenaga Listrik

A. Efisiensi penerangan
1. Gunakan lampu hemat energi
2. Menghidupkan lampu hanya pada saat diperlukan saja
3. Mewarnai dinding, lantai dan langit-langit dengan warna terang, sehinga tidak membutuhkan penerangan yang berlebihan.
4. Memasang lampu penerangan dalam jarak yang tepat dengan obyek yang akan diterangi.
5. Mengatur perlengkapan rumah agar tidak menghalangi penerangan.

B. Lemari pendingin

1. Memilih lemari es dengan ukuran/kapasitas yang sesuai.
2. Membuka pintu lemari es seperlunya, dan pada kondisi tertentu dijaga agar dapat tertutup rapat.
3. Mengisi lemari es secukupnya (tidak melebihi kapasitas).
4. Menempatkan lemari es jauh dari sumber panas, seperti sinar matahari, kompor.
5. Meletakkan lemari es minimal 15 cm dari dinding/tembok rumah.
6. Tidak memasukkan makanan/minuman yang masih panas ke dalam lemari es.
7. Membersihkan kondensor (terletak di belakang lemari es) secara teratur dari debu dan kotoran, agar proses pelepasan panas berjalan baik.
8. Mengatur suhu lemari es sesuai kebutuhan karena semakin rendah/dingin temperatur, semakin banyak konsumsi energi listrik.
9. Mematikan lemari es bila tidak digunakan dalam waktu lama.

C. Pengatur suhu udara (AC)
1. Memilih AC hemat energi dan daya yang sesuai dengan besarnya ruangan.
2. Mematikan AC bila ruangan tidak digunakan.
3. Mengatur suhu ruangan secukupnya, tidak menyetel AC terlalu dingin.
4. Menutup pintu, jendela dan ventilasi ruangan agar udara panas dari luar tidak masuk.
5. Menempatkan AC sejauh mungkin dari sinar matahari lansung agar efek pendingin tidak berkurang.
6. Membersihkan saringan (filter) udara dengan teratur.

D. Motor-motor
1. Memilih motor sesuai dengan kegunaan dan kapasitas.
2. Menentukan seting tegangan yang tidak berlebihan. Untuk motor dengan range tegangan 380 V sampai dengan 400 V, sebaiknya di set pada tegangan 380 ~ 385 V.
3. Memilih motor-motor yang mampu mengontrol penyerapan daya listrik sesuai dengan beban.
Motor elevator dengan muatan 9 orang, dipilih yang mampu menyerap daya kurang dari spesifikasi maksimum apabila penumpang kurang dari 9 orang.
4. Melakukan pemeriksaan terjadwal agar motor berfungsi sesuai dengan spesifikasinya.

E. Pemakaian tenaga listrik pada beban puncak

Penyerapan daya listrik, kalau memungkinkan disebar pada luar waktu beban puncak, sehingga mengurangi pengoperasian pembangkit yang tidak efisien.

F. Audit energi
Menghitung besarnya konsumsi energi listrik pada bangunan gedung dan mengenali cara-cara untuk penghematannya.
G. Konstruksi bangunan yang efisien
Dalam rekayasa bangunan gedung diupayakan semaksimal mungkin agar ef isiensi penerangan, efisiensi pengaturan suhu udara, pengaturan instalasi listrik, dapat dimaksimalkan. Motor-motor produksi sedapat mungkin dekat dengan pusat listrik (transformator).

Saturday, December 6, 2008

Proteksi Generator

PERAN GENERATOR DALAM SISTEM DAN SYARAT PROTEKSI GENERATOR

Sebagai sumber energi listrik dalam suatu sistem tenaga, generator memiliki peran yang penting, sehingga tripnya PMT/CB generator sangat tidak dikehendaki karena sangat mengganggu sistem, terutama generator yang berdaya besar. Dan juga karena letaknya di hulu, PMT/CB generator tidak boleh mudah trip tetapi juga harus aman bagi generator, walaupun didalam sistem banyak terjadi gangguan

Untuk menjaga keandalan dari kerja generator, maka dilengkapilah generator dengan peralatan-peralatan proteksi. Peralatan proteksi generator harus betul-betul mencegah kerusakan generator, karena kerusakan generator selain akan menelan biaya perbaikan yang mahal juga sangat mengganggu operasi sistem. Proteksi generator juga harus mempertimbangkan pula proteksi bagi mesin penggeraknya, karena generator digerakkan oleh mesin penggerak mula.

GANGGUAN GENERATOR
Gangguan Generator relatif jarang terjadi karena:
a. Instalasi Listrik tidak terbuka terhadap lingkungan, terlindung terhadap petir dan tanaman.
b. Ada Transformator Blok dengan hubungan Wye-Delta, sehingga mencegah arus (gangguan) urutan nol dari Saluran Transmisi masuk ke Generator.
c. Instalasi Listrik dari Generator ke Rel umumnya memakai Cable Duct yang kemungkinannya mengalami gangguan kecil.
d. Tripnya PMT Generator sebagian besar (lebih dari 50%) disebabkan oleh gangguan mesin penggerak generator.

Namun ada juga gangguan-gangguan yang sering terjadi pada generator, meliputi gangguan pada :
Stator
Rotor (Sistem Penguat)
Mesin Penggerak
Back up instalasi di luar Generator


Pengaman terhadap gangguan luar generator

Generator umumnya dihubungkan ke rel (busbar). Beban dipasok oleh saluran yang dihubungkan ke rel. Gangguan kebanyakan ada di saluran yang mengambil daya dari rel.
Instalasi penghubung generator dengan rel umumnya jarang mengalami gangguan. Karena rel dan saluran yang keluar dari rel sudah mempunyai proteksi sendiri,
maka proteksi generator terhadap gangguan luar cukup dengan relay arus lebih dengan time delay yang relatif lama dan dengan voltage restrain.
Voltage Restrain
• Arus Hubung Singkat Generator turun sebagai fungsi waktu.
• Hal ini disebabkan oleh membesarnya arus stator yang melemahkan medan magnit kutub (rotor) sehingga ggl dan tegangan jepit Generator turun.
• Untuk menjamin kerjanya Relay sehubungan dengan menurunnya arus hubung singkat Generator, diperlukan Voltage Restrain Coil.
• Mengingat karakteristik hubung singkat Generator yang demikian, pada Generator besar dipakai juga Relay Impedansi.

PENGAMAN TERHADAP GANGGUAN DALAM GENERATOR

a. Hubung singkat antar fasa
b. Hubung singkat fasa ke tanah
c. Suhu tinggi
d. Penguatan hilang
e. Arus urutan negatif
f. Hubung singkat dalam sirkit rotor
g. Out of Step
h. Over flux

Hubung singkat antar fasa
• Untuk proteksi dipergunakan relay differensial.
• Kalau relay ini bekerja maka selain mentripkan PMT generator, PMT medan penguat generator harus trip juga.
• Selain itu melalui relay bantu, mesin penggerak harus dihentikan.

Hubung Singkat Fasa – Tanah
a. Dipakai Relay Hubung Tanah terbatas.
b. Relay ini memerintahkan
- PMT Generator Trip
- PMT Medan Penguat Mesin Penggerak berhenti (melalui Relay Bantu)
c. Pada Generator yang memakai Trafo Blok Y- , sehingga arus urutan nol dari gangguan hubung tanah di luar Generator tidak masuk, bisa dipakai pula :
- Relay Tegangan yang mengukur pergeseran tegangan titik Netral terhadap tanah.
- Relay Arus yang mengukur arus titik Netral ke tanah lewat tahanan atau kumparan.

Penguatan Hilang
• Penguatan hilang atau penguatan melemah (under exitation) bisa menimbulkan pemanasan yang berlebihan pada kepala kumparan stator
• Penguatan hilang menyebabkan gaya mekanik pada kumparan arus searah rotor hilang, terjadi out of step, menjadi Generator Asinkron, timbul arus pusar berlebihan di rotor, selanjutnya rotor mengalami pemanasan berlebihan.
• Relay penguatan hilang akan mentripkan PMT Generator

Penggunaan Relay Mho
• Dalam keadaan eksitasi rendah / hilang, Generator akan mengambil daya Reaktif dari sistem.
• Oleh karenanya dipakai Relay Mho yang bekerja pada kwadran 3 dan 4 dari Kurva Kemampuan Generator.
• Perlu perhatian pada Beban Kapasitif, misalnya Saluran Kosong, Daya Reaktif akan masuk ke Generator dan menyebabkan Relay ini bekerja.

Hubung Singkat dalam Sirkit Rotor

Hubung singkat dalam sirkit rotor bisa menyebabkan penguatan hilang.
• Karena hubung singkat dalam sirkit rotor ini, bisa timbul distorsi medan magnet dan selanjutnya timbul getaran berlebihan.
• Cara mendeteksi gangguan sirkit rotor : Potentio Meter, AC Injection, DC Injection.

Relay Negatif Sequence
• Gangguan yang menimbulkan ketidak-simetrisan Tegangan maupun arus, menimbulkan Negatif Sequence Current, tetapi tidak dapat dideteksi oleh Relay-relay yang telah disebutkan sebelumnya, maka sebelum Negatif Sequence Current terjadi diharapkan dapat dideteksi oleh Relay ini.
• Gangguan-gangguan tersebut di atas misalnya adalah :
– Hubung Singkat antar lilitan satu fasa.
– Hubung Tanah di dekat titik Netral.
– Ada sambungan salah satu fasa yang kendor.
• Negative Sequence Current bisa menimbulkan pemanasan berlebihan pada rotor.

Gangguan Internal Generator Yang Sulit Dideteksi
1. Hubung singkat antar lilitan satu fasa, tidak terdeteksi oleh relay diferensial.
2. Hubung tanah di dekat titik Netral, tidak terdeteksi oleh relay hubung tanah terbatas.
3. Lilitan putus atau sambungan kendor, tidak terlihat oleh relay diferensial.
4. Diharapkan relay suhu dan relay Negatif Sequence bisa ikut mendeteksi dua gangguan ini.

Untuk Exciter berupa generator arus bolak balik yang memakai diode berputar, deteksi gangguan rotor hanya bisa lewat :
a. Arus medan Pilot Exciter yang melewati sikat, bisa ditap untuk diamati. Arus ini akan membesar kalau ada gangguan kumparan rotor.
b. Gangguan Kumparan rotor menimbulkan vibrasi yang bisa dideteksi oleh detektor vibrasi.

Gangguan dalam mesin penggerak
Gangguan-gangguan yang demikian adalah :
• Tekanan minyak pelumas terlalu rendah
• Suhu air pendingin atau suhu bantalan terlalu tinggi
• Daya balik,

Adakalanya gangguan dalam mesin penggerak generator memerlukan tripnya PMT Generator.

Suhu Tinggi
• Suhu tinggi bisa terjadi pada bantalan generator atau pada kumparan stator.
• Hal ini masing-masing di deteksi oleh relay suhu yang mula-mula membunyikan alarm kemudian mentripkan PMT generator dan memberhentikan mesin penggerak apabila yang bekerja adalah relay suhu bantalan.
Penyebab Suhu Tinggi
A. Lilitan Stator, penyebabnya:
1. Beban Lebih
2. Beban tidak simetris, arus urutan negatif
3. Hubung singkat yang tidak terdeteksi
4. Penguatan Hilang / Lemah
5. Ventilasi kurang baik, hidrogin bocor
6. Kotoran / debu melekat pada lilitan

B. Kumparan Rotor, penyebabnya:
1. Beban stator tidak seimbang, arus urutan negatif
2. Hubung singkat yang tidak terdeteksi
3. Out of step
4. Ventilasi kurang baik, hidrogin bocor
5. Kotoran / debu melekat pada lilitan

C. Bantalan Generator, penyebabnya:
1. Pelumasan kurang lancar, tekanannya kurang tinggi
2. Kerusakan pada bagian yang bergeseran


Tekanan minyak terlalu rendah
• Tekanan minyak pelumas yang terlalu rendah bisa merusak bantalan, oleh karenanya jika hal ini terjadi Mesin Penggerak perlu segera dihentikan melalui proses alarm terlebih dahulu apabila tekanan ini turun secara bertahap
• Berhentinya Mesin Penggerak harus bersamaan dengan tripnya PMT Generator

Suhu Air Pendingin atau Suhu Bantalan terlalu tinggi
• Sama seperti tekanan terlalu rendah


Daya Balik
Daya balik dimana generator menjadi motor dapat menimbulkan kerusakan karena pemanasan berlebihan pada sudu-sudu tekanan rendah Turbin uap. Pada Turbin air dapat meningkatkan kavitasi. Oleh karenanya diperlukan relay daya balik pada generator yang digerakkan oleh turbin uap atau turbin air dengan melalui Alarm terlebih dahulu. Untuk Turbin Gas masalahnya sama dengan untuk Turbin Uap.

Putaran Lebih
• Apabila PMT generator trip, maka akan terjadi putaran lebih yang membahayakan generator dan mesin penggeraknya.
• Untuk ini diperlukan relay putaran lebih yang memberhentikan mesin penggerak.

Tegangan Lebih

• Apabila PMT generator trip, maka bisa terjadi tegangan lebih.
• Untuk ini diperlukan relay tegangan lebih.

Tekanan dan Kebocoran Hidrogen
Untuk generator yang didinginkan dengan gas Hidrogen, harus ada relay yang mendeteksi tekanan rendah dan kebocoran Hidrogen untuk memberhentikan mesin penggerak generator dan memutus arus medan

Relay Over Fluks

Relay ini mengukur besaran volt per Hertz. Tegangan imbas volt dalam suatu kumparan adalah sebanding dengan kerapatan fluks dan frekwensi. Over fluks bisa terjadi pada Tegangan normal tetapi frekwensi rendah. Hal semacam ini
bisa terjadi pada saat menstart generator dimana frekwensi masih rendah, karena putaran Generator masih rendah, tetapi sudah ada arus penguat dari exciter. Kerapatan fluks yang tinggi ini akan menimbulkan arus pusar yang tinggi sehingga timbul pemanasan berlebihan dalam inti generator dan dalam inti trafo penaik tegangan. Begitu pula dengan rugi histerisis yang menjadi makin tinggi
apabila kerapatan fluks magnetik tinggi, hal ini ikut menambah pemanasan inti stator.