Pendahuluan
Pusat-pusat pembangkit tenaga listrik terutama yang menggunakan tenaga air, biasanya terletak jauh dari pusat-pusat beban. Dengan demikian, tenaga listrik yang telah dibangkitkan harus disalurkan melalui saluran-saluran transmisi. Saluran-saluran ini membawa tenaga listrik dari pusat pembangkit ke pusat-pusat beban baik langsung maupun melalui gardu-gardu induk dan gardu-gardu rele. Saluran transmisi yang dapat digunakan adalah saluran udara atau saluran bawah tanah. Menurut jenis arus yang dapat dibangkitkan yaitu sistem arus bolak balik (AC atau alternating current) dan sistem arus searah (DC atau direct current).
Dengan memperhatikan kondisi negara Indonesia, luas wilayahnya sebagian besar adalah lautan. Lautan ini bukanlah suatu pemisah antara pulau yang satu dengan pulau lainnya, melainkan pulau dipandang sebagai penghubung antar pulau. Bertitik tolak dari uraian tersebut, maka seyogyanya para ahli perencanaan penyediaaan tenaga listrik di negera ini turut menyikapi akan penyatuan sistem ketenagalistrikan, dengan menerapkan transmisi dengan menggunakan kabel bawah laut. Penyaluran tenaga listrik dengan sistem arus searah baru dianggap ekonomis bila panjang saluran udara lebih dari 640 km atau saluran bawah tanah lebih panjang dari 50 km.
Kabel Tenaga dan Sistem Transmisi HVDC
Untuk penyaluran tenaga listrik di bawah tanah digunakan kabel tenaga (power cable). Jenis kabel tenaga dapat diklasifikasikan atas :
a. Kelompok menurut kulit pelindungnya (armor)
b. Kelompok menurut konstruksinya
c. Kelompok menurut penggunaan, misalnya kabel saluran, kabel laut (submarine), kabel corong utama, kabel udara, dan kabel taruh.
Kabel taruh yang dimaksud adalah cara menaruh kabel yang meliputi :
• Cara menaruh langsung (direct laying)
• Sistem pita (duct line)
• Sistem terusan tertutup
Saluran transmisi dapat dikategorikan atas saluran udara (overhead line) dan saluran bawah tanah (under ground).
• Saluran Udara
Sebagaimana telah disebutkan bahwa pusat pembangkit umumnya jauh dari pusat-pusat beban. Apabila dimisalkan dibangun tidak persis di tepi pantai, yang mungkin di tengah hutan atau di kaki gunung dimana sumber energi itu berada, maka dengan demikian tetap dibutuhkan saluran udara yang selanjutnya dihubungkan dengan kabel laut.
Adapun sifat-sifat kawat logam adalah :
• Kawat tembaga tarik yang dipakai pada saluran transmisi karena konduktivitasnya tinggi, meskipun kuat tariknya tidak cukup untuk instalasi tertentu. Dibandingkan dengan kawat tembaga tarik, konduktivitas kawat Aluminium Cable Steel Reinforced (ACSR) lebih rendah, meskipun kekuatan mekanisnya lebih tinggi.
• Kawat tembaga campuran (alloy), konduktivitasnya lebih rendah dari kawat tembaga tarik, tetapi mempunyai kekuatan tarik yang lebih tinggi.
• Kawat aluminium campuran (alloy), mempunyai kekuatan mekanis yang lebih tiggi dari aluminium murni sehingga dipakai untuk gawang (span) yang lebih besar.
• Kawat baja berlapis tembaga mempunyai kekutan mekanis yang besar, dan biasanya dipakai untuk gawang yang besar atau sebagai kawat tanah.
• Kawat baja berlapis aluminium mempunyai kekuatan mekanis yang besar, tetapi konduktivitasnya lebih kecil dibanding dengan yang berlapis tembaga meskipn ia lebih ringan.
• Saluran Bawah Laut
Kabel yang digunakan untuk transmisi HVDC pada umumnya mempunyai sifat yang sama dengan kabel tanah, namun dengan konstruksi yang berbeda.
Sebagai penghantar biasanya digunakan kawat tembaga berlilit (annealed stranded), dan sebagai kulit pelindung digunakan pita baja yang dapat ditaruh di dasar laut.
Survei Jalur dan Penetapan Panjang Kabel
Survei ini bertujuan untuk mendapatkan data-data kondisi laut dan jalur kabel yang sesuai. Lintasan yang dilalui kabel diusahakan yang pendek dan lurus, dasar laut tanpa lembah dan laut yang tidak terlalu dalam. Survei jalur kabel meliputi:
• Karakteristik permukaan dasar laut
• Kedalaman laut
• Pergerakan arus
• Arus pasang surut
• Pergeseran pasir dasar laut
• Data pendukung
Perbedaan antara panjang aktual dan panjang yang direncanakan disebut "panjang kabel slack".
Perbandingan Kapasitas Transmisi Daya pada Tegangan Tinggi DC dan AC
Apabila ada dua saluran transmisi yang dapat dibandingkan, satu adalah saluran transmisi ac dan yang lainnya adalah saluran transmisi dc. Dianggap bahwa isolator-isolator ac dan dc menahan tegangan puncak ke tanah yang sama sehingga tegangan Vd sama dengan 2 kali tegangan rms ac. Karena itu, serta data teknik lainnya sama, dapat dilihat bahwa daya dc perkonduktor adalah :
P(dc) = Vd.Id W/kond. ......................(1)
dan daya ac perkonduktor adalah :
P(ac) = VLN.IL.Cos W/kond. ..........(2)
Karena itu, rasio dari daya dc perkondukor terhadap daya ac perkonduktor (fasa), dapat dinyatakan sebagai :
........(3)
Jika Cos j = 0,945 maka :
W/kond...(4)
Selanjutnya kapasitas transmisi daya total saluran ac dan dc adalah :
Pdc = 2 Pdc W ..................................(5)
Pac = 3 Pac W..................................(6)
Karena itu rasionya dapat dituliskan :
.................................(7)
Jadi, dari studi memperlihatkan bahwa dari suatu saluran dc umumnya biasanya sekitar 33 % lebih kecil dari suatu saluran ac untuk kapasitas yang sama. Selanjutnya jika suatu saluran dc dua kutub dibandingkan dengan saluran ac 3 phasa rangkaian ganda, biaya saluran dc sekitar 45 % lebih kecil dari saluran ac. Biasanya keuntungan biaya saluran dc meningkat pada tegangan tinggi. Rugi daya karena gejala korona lebih kecil pada saluran dc dibanding saluran ac.
Daya reaktif yang dihasilkan dan diserap oleh suatu saluran transmisi ac tegangan tinggi dapat dinyatakan sebagai :
VAR/unit panjang...(8)
dan QL=XLI2=wL.I2VAR/unit panjang...(9)
Jika daya reaktif yang dibangkitkan dan diserap oleh saluran, sama
Qr=QL atau WC.V2=WL.I2 .............(10)
Terlihat bahwa pembebanan impedansi surja (beban alami) adalah merupakan fungsi dari tegangan, induktansi dan kapasitansi saluran tidak merupakan fungsi dari panjang saluran. Bagaimanapun, converter-converter pada kedua ujung saluran membutuhkan daya reaktif dari sistem ac. Kabel-kabel tanah yang digunakan untuk transmisi ac dapat juga digunakan untuk dc dan biasanya dapat menyalurkan daya dc yang lebih besar dari ac. Hal ini disebabkan karena tidak adanya arus pemuatan kapasitif dan pemanfaatan isolasi yang lebih baik serta pemakaian bahan dielektrik lebih sedikit.
Pekerjaan Instalasi Kabel Laut
Gaya tarik peletakan kabel ditentukan oleh kecepatan saat peletakan, berat kabel, gaya pecah dan arus pasang. Gaya tarik kabel (Ts) dapat diketahui dapat diketahui dengan menggunakan persamaan :
Ts = wh + To .................................(11)
Selama kabel diletakkan, "To" dikontrol pada nilai 500 - 1000 kg.
Beberapa jenis pekerjaan pada saat peletakan kabel meliputi :
1. Pemilihan vessel peletakan kabel, ditarik oleh beberapa tug boat.
2. Pekerjaan persiapan peletakan kabel
3. Penempatan kabel laut
4. Proteksi kabel laut
Ada beberapa penyebab kerusakan kabel laut, di antaranya oleh peralatan pancing, jangkar kapal, gigitan ikan, gesekan sirip ikan, dan lain-lain. Oleh karena itu kabel laut harus diproteksi terhadap kemungkinan terjadinya gangguan seperti yang disebutkan di atas. Ada beberapa cara yang telah dilakukan memproteksi ganggguan, di antaranya adalah :
a. Menimbun kabel laut di dasar laut, kedalaman penimbunan tergantung panjang mata peralatan pancing atau mata jangkar, biasanya (20 - 150)cm.
b. Proteksi dengan rantai pelindung atau jaring pelindung yang diikat pada kabel.
Pemilihan jalur yang tepat atau dengan pemberian tanda yang menyolok pada jalur lintasan kabel sangat membantu untuk menghindari kerusakan kabel oleh peralatan pancing dan jangkar kapal.
Analisis dan Pembahasan
Kemungkinan penggunaan transmisi HVDC kabel laut di Indonesia adalah yang melintasi selat Sunda, yang diambil dari interkoneksi jaringan listrik Jawa-Bali dan Sumatera. Bukit Asam adalah pusat tambang batu bara di Sumatera. Jaraknya sekitar 170 km dari Palembang, 350 km dari selat Sunda dan sekitar 450 km dari Jakarta. Berdasarkan data dari Departemen Pertambangan, diperoleh cadangan batu bara lebih dari 150 juta ton, sekitar 37 juta ton yang berada di permukaan (open pit mining) dan sekitar 117 juta ton dengan pertambangan di bawah permukaan tanah (underground mining).
Jarak antara pulau Sumatera dengan Jawa barat sangat dekat, hanya dibatasi oleh selat Sunda saja. Penggunaan kabel laut sekitar 30 km hingga 35 km tidak terlalu bermasalah. Katapang di Sumatera yang merupakan daerah perikanan cukup ideal tempat pengiriman daya listrik melalui kabel laut ke Merak Jawa barat dengan jarak sekitar 35 km.
Berdasarkan energi balance ternyata diperoleh bahwa lebih dari 50 % penggunaan energi di seluruh Jawa digunakan di Jawa barat, dan permintaan akan energi listrik meningkat terus seiring dengan pertumbuhan industri-industri baru.
Transmisi HVDC terdiri dari :
• Stasiun converter dipasang pada pusat pengirim di Bukit Asam
• Stasiun inverter dipasang pada sisi penerima akhir di Merak Jawa barat.
• Saluran transmisi udara sepanjang 360 km antara Bukit Asam dengan Katapang ujung Sumatera dengan arus searah (DC)
• Saluran kabel bawah laut menyeberangi selat Sunda antara Katapang dengan Merak sejauh 35 km.
Di samping itu beberapa lokasi lain di Indonesia yang memungkinkan untuk menggunakan transmisi HVDC dengan kabel laut antara lain :
• Palembang - Jakarta
• Banyumas - Gilimanuk
• Jawa Timur - Madura
• Bukit Asam - Katapang - Merak
• Bukit Asam - Katapang - Batam - Singapura
• Pulau Kalimantan - pulau Sulawesi
Pertimbangan Penggunaan Transmisi HVDC
Sebagaimana telah dijelaskan sebelumnya bahwa dengan pertimbangan sumber energi di Bukit Asam, beban-beban di Jawa Barat serta jarak antara kedua daerah tersebut dan beberapa keadaan yang menguntungkan yang telah diterapkannya transmisis HVDC. Di beberapa negara seperti di Cross - Channel, Konti - Skandinavia, New Zealand (250kV) serta Sardinia - Italia Mainland (200 kV), dan lain-lain, maka kemungkinan besar HVDC ini bisa diterapkan antara Bukit Asam dengan Merak, dan beberapa daerah di Indonesia.
Pemilihan tegangan transmisi dapat dibuat dengan melihat pertimbangan-pertimbangan sebagai berikut :
• Total daya yang dikirim
• Karakteristik dari sistem transmisi
• Tegangan tertinggi yang direkomendasikan untuk kabel laut.
Keuntungan-keuntungan Utama Transmisi DC
1. Jika biaya yang besar untuk stasiun-stasiun converter tidak diperhitungkan, saluran-saluran udara dan kabel dc lebih murah dari pada saluran-saluran udara dan kabel-kabel ac. Jarak impas keduanya adalah sekitar 500 mil untuk saluran udara, (15 - 30 ) mil untuk kabel bawah laut, (30 - 60) mil untuk kabel bawah tanah.
2. Kondisi rugi corona dan radio interferensi lebih baik pada saluran dc dibandingkan saluran ac.
3. Faktor daya saluran dc selalu sama dengan satu (1), dan karenanya tidak dibutuhkan konpensasi daya reaktif.
4. Karena tidak dibutuhkan operasi sinkron, maka panjang saluran tidak dibatasi oleh stabilitas, demikian juga daya dapat dikirim dengan kabel sampai pada jarak yang sangat jauh.
5. Rugi saluran dc lebih kecil daripada saluran ac untuk saluran yang sebanding.
Kerugian-kerugian Utama Transmisi DC
1. Converter menimbulkan arus dan tegangan harmonisa pada kedua sisi ac dan dc, karena itu dibutuhkan filter.
2. Converter menkomsumsi daya reaktif
3. Stasiun-stasiun converter masih relatif mahal
4. Circuit Breaker (CB) dc mempunyai kerugian-kerugian dibanding CB ac, sebab arus dc tidak menurun ke titik 0 dua kali setiap siklus seperti pada arus ac.
5. Tidak mudah menyadap daya pada titik sepanjang saluran dc, sehingga biasanya merupakan sistem poit to point yang menghubungkan suatu stasiun pembangkit besar ke suatu pusat konsumen daya yang besar, atau interkoneksi dua sistem ac yang terpisah.
Kesimpulan
Dari uraian sebelumnya maka dapat ditarik kesimpulan bahwa berdasarkan kondisi geografis negara Indonesia yang terdiri atas pulau-pulau, memungkinkan diterapkan transmisi dc dengan kabel laut. Hal ini diperkuat dengan suatu pertimbangan dari keuntungan-keuntungan yang dapat diperoleh dengan menggunakan sistem transmisi dc.
Referensi
1. Gonen, Turan, " electric Power Transmission System Engineering", John Wiley and Sons, California 1976.
2. Gonen, Turan,"Electric Power Distribution System Engineering", University of Missouri at Columbia, McGraw-Hill Book Company, New York - St. Louis - San Francisco - Auckland - Bogota - Hamburg - Johannesburg - London - Madrid - Mexico Montreal - New Delhi - Panama - Paris - Sao Paulo - Singapore - Sydney -Tokyo - Toronto, 1986.
3. Mohamed E. El - Hawary, "Electrical Power System, Design and Analysis", Technical University of Nova Scotia, The Institute of Electrical and Electronic Engineers, Inc., New York1983.
4. Kadir, A, "Energi sumber Inovasi, Tenaga Listrik dan Potensi Ekonomi, Edisi Kedua, Universitas Indonesia Press, 19955 Jakarta.
5. Technology Transfer Institute - EPDC International - PLN Pusat, " Technical Forum on Direct Current Transmission", Jakarta 18 - 19 Oktober 1976.
Ekonomi | Kebidanan | makalah | Literature | Otomotife | News | Midwife | Mobile | Phone Cell
Wednesday, November 12, 2008
Sunday, November 9, 2008
Klasifikasi Mesin Listrik
Pada umumnya mesin listrik dapat dibagi menjadi dua bagian, yaitu mesin listrik statis dan mesin listrik dinamis.
Mesin listrik statis adalah transformator, alat untuk mentransfer energi listrik dari sisi primer ke sekunder dengan perubahan tegangan pada frekuensi yang sama.
Mesin listrik dinamis terdiri atas motor listrik dan generator. Motor listrik merupakan alat untuk mengubah energi listrik menjadi energi mekanik putaran. Generator merupakan alat untuk mengubah energi mekanik menjadi energi listrik. Anatomi keseluruhan mesin listrik tampak pada gambar dibawah ini.

Mesin listrik statis adalah transformator, alat untuk mentransfer energi listrik dari sisi primer ke sekunder dengan perubahan tegangan pada frekuensi yang sama.
Mesin listrik dinamis terdiri atas motor listrik dan generator. Motor listrik merupakan alat untuk mengubah energi listrik menjadi energi mekanik putaran. Generator merupakan alat untuk mengubah energi mekanik menjadi energi listrik. Anatomi keseluruhan mesin listrik tampak pada gambar dibawah ini.

Energi Surya dan Prospek Pengembangannya di Indonesia

Energi mempunyai peranan penting dalam pencapaian tujuan sosial, ekonomi, dan lingkungan untuk pembangunan berkelanjutan, serta merupakan pendukung bagi kegiatan ekonomi nasional. Penggunaan energi di Indonesia meningkat pesat sejalan dengan pertumbuhan ekonomi dan pertambahan penduduk. Sedangkan, akses ke energi yang andal dan terjangkau merupakan pra-syarat utama untuk meningkatkan standar hidup masyarakat.
Untuk memenuhi kebutuhan energi yang terus meningkat tersebut, dikembangkan berbagai energi alternatif, di antaranya energi terbarukan. Potensi energi terbarukan, seperti: biomassa, panas bumi, energi surya, energi air, energi angin dan energi samudera, sampai saat ini belum banyak dimanfaatkan, padahal potensi energi terbarukan di Indonesia sangatlah besar.
Energi surya merupakan salah satu energi yang sedang giat dikembangkan saat ini oleh Pemerintah Indonesia karena sebagai negara tropis, Indonesia mempunyai potensi energi surya yang cukup besar. Berdasarkan data penyinaran matahari yang dihimpun dari 18 lokasi di Indonesia, radiasi surya di Indonesia dapat diklasifikasikan berturut-turut sebagai berikut: untuk kawasan barat dan timur Indonesia dengan distribusi penyinaran di Kawasan Barat Indonesia (KBI) sekitar 4,5 kWh/m 2 /hari dengan variasi bulanan sekitar 10%; dan di Kawasan Timur Indonesia (KTI) sekitar 5,1 kWh/m 2 /hari dengan variasi bulanan sekitar 9%. Dengan demikian, potesi angin rata-rata Indonesia sekitar 4,8 kWh/m 2 /hari dengan variasi bulanan sekitar 9%.
Untuk memanfaatkan potensi energi surya tersebut, ada 2 (dua) macam teknologi yang sudah diterapkan, yaitu:
• Teknologi energi surya fotovoltaik, energi surya fotovoltaik digunakan untuk memenuhi kebutuhan listrik, pompa air, televisi, telekomunikasi, dan lemari pendingin di Puskesmas dengan kapasitas total ± 6 MW.
• Teknologi energi surya termal, energi surya termal pada umumnya digunakan untuk memasak (kompor surya), mengeringkan hasil pertanian (perkebunan, perikanan, kehutanan, tanaman pangan) dan memanaskan air.
1. TEKNOLOGI ENERGI SURYA FOTOVOLTAIK
Salah satu cara penyediaan energi listrik alternatif yang siap untuk diterapkan secara masal pada saat ini adalah menggunakan suatu sistem teknologi yang diperkenalkan sebagai Sistem Energi Surya Fotovoltaik (SESF) atau secara umum dikenal sebagai Pembangkit Listrik Tenaga Surya Fotovoltaik (PLTS Fotovoltaik). Sebutan SESF merupakan istilah yang telah dibakukan oleh pemerintah yang digunakan untuk mengidentifikasikan suatu sistem pembangkit energi yang memanfaatkan energi matahari dan menggunakan teknologi fotovoltaik. Dibandingkan energi listrik konvensional pada umumnya, SESF terkesan rumit, mahal dan sulit dioperasikan. Namun dari pengalaman lebih dari 15 tahun operasional di beberapa kawasan di Indonesia, SESF merupakan suatu sistem yang mudah didalam pengoperasiannya, handal, serta memerlukan biaya pemeliharaan dan operasi yang rendah menjadikan SESF mampu bersaing dengan teknologi konvensional pada sebagian besar kondisi wilayah Indonesia yang terdiri atas pulau - pulau kecil yang tidak terjangkau oleh jaringan PLN dan tergolong sebagai kawasan terpencil
Selain itu SESF merupakan suatu teknologi yang bersih dan tidak mencemari lingkungan. Beberapa kondisi yang sesuai untuk penggunaan SESF antara lain pada pemukiman desa terpencil, lokasi transmigrasi, perkebunan, nelayan dan lain sebagainya, baik untuk penerangan rumah maupun untuk fasilitas umum. Akan tetapi sesuai dengan perkembangan jaman, pada saat ini di negara-negara maju penerapan SESF telah banyak digunakan untuk suplai energi listrik di gedung-gedung dan perumahan di kota-kota besar.
Pada umumnya modul fotovoltaik dipasarkan dengan kapasitas 50 Watt-peak (Wp) dan kelipatannya. Unit satuan Watt-peak adalah satuan daya (Watt) yang dapat dibangkitkan oleh modul fotovoltaik dalam keadaan standar uji (Standard Test Condition - STC). Efisiensi pembangkitan energi listrik yang dihasilkan modul fotovoltaik pada skala komersial saat ini adalah sekitar 14 - 15 %.
Komponen utama suatu SESF adalah:
• Sel fotovoltaik yang mengubah penyinaran/radiasi matahari menjadi listrik secara langsung (direct conversion). Teknologi sel fotovoltaik yang banyak dikembangkan dewasa ini pada umumnya merupakan jenis teknologi kristal yang dibuat dengan bahan baku berbasis silikon. Produk akhir dari modul fotovoltaik menyerupai bentuk lembaran kaca dengan ketebalan sekitar 6 - 8 milimeter.
• Balance of system (BOS) yang meliputi controller, inverter , kerangka modul,peralatan listrik, seperti kabel, stop kontak, dan lain-lain, teknologinya sudah dapat dikuasai;
• Unit penyimpan energi (baterai) sudah dapat dibuat di dalam negeri;
• Peralatan penunjang lain seperti: inverter untuk pompa, sistem terpusat, sistem hibrid, dan lain-lain masih diimpor.
Kandungan lokal modul fotovoltaik termasuk pengerjaan enkapsulasi dan framing sekitar 25%, sedangkan sel fotovoltaik masih harus diimpor. Balance of System (BOS) masih bervariasi tergantung sistem desainnya. Kandungan lokal dari BOS diperkirakan telah mencapai diatas 75%.
Sasaran Pengembangan Fotovoltaik di Indonesia
• Sasaran pengembangan energi surya fotovoltaik di Indonesia adalah sebagai berikut: Semakin berperannya pemanfaatan energi surya fotovoltaik dalam penyediaan energi di daerah perdesaan, sehingga pada tahun 2020 kapasitas terpasangnya menjadi 25 MW.
• Semakin berperannya pemanfaatan energi surya di daerah perkotaan.
• Semakin murahnya harga energi dari solar photovoltaic , sehingga tercapai tahap komersial.
• Terlaksananya produksi peralatan SESF dan peralatan pendukungnya di dalam negeri yang mempunyai kualitas tinggi dan berdaya saing tinggi.
Strategi Pengembangan Fotovoltaik di Indonesia
Strategi pengembangan energi surya fotovoltaik di Indonesia adalah sebagai berikut:
• Mendorong pemanfaatan SESF secara terpadu, yaitu untuk keperluan penerangan (konsumtif) dan kegiatan produktif.Mengembangan SESF melalui dua pola, yaitu pola tersebar dan terpusat yang disesuaikan dengan kondisi lapangan. Pola tersebar diterapkan apabila letak rumah-rumah penduduk menyebar dengan jarak yang cukup jauh, sedangkan pola terpusat diterapkan apabila letak rumah-rumah penduduk terpusat.
• Mengembangkan pemanfaatan SESF di perdesaan dan perkotaan.
• Mendorong komersialisasi SESF dengan memaksimalkan keterlibatan swasta.
• Mengembangkan industri SESF dalam negeri yang berorientasi ekspor.
• Mendorong terciptanya sistem dan pola pendanaan yang efisien dengan melibatkan dunia perbankan.
Program Pengembangan Fotovoltaik di Indonesia
Program pengembangan energi surya fotovoltaik adalah sebagai berikut:
• Mengembangkan SESF untuk program listrik perdesaan, khususnya untuk memenuhi kebutuhan listrik di daerah yang jauh dari jangkauan listrik PLN.
• Meningkatkan penggunaan teknologi hibrida, khususnya untuk memenuhi kekurangan pasokan tenaga listrik dari isolated PLTD.
• Mengganti seluruh atau sebagian pasokan listrik bagi pelanggan Sosial Kecil dan Rumah Tangga Kecil PLN dengan SESF. Pola yang diusulkan adalah:
• Memenuhi semua kebutuhan listrik untuk pelanggan S1 dengan batas daya 220 VA;
• Memenuhi semua kebutuhan untuk pelanggan S2 dengan batas daya 450 VA;
• Memenuhi 50 % kebutuhan listrik untuk pelanggan S2 dengan batas daya 900 VA;
• Memenuhi 50 % kebutuhan untuk pelanggan R1 dengan batas daya 450 VA.
• Mendorong penggunaan SESF pada bangunan gedung, khususnya Gedung Pemerintah.
• Mengkaji kemungkinan pendirian pabrik modul surya untuk memenuhi kebutuhan dalam negeri dan kemungkinan ekspor.
• Mendorong partisipasi swasta dalam pemanfaatan energi surya fotovoltaik.
• Melaksanakan kerjasama dengan luar negeri untuk pembangunan SESF skala besar.
Peluang Pemanfaatan Fotovoltaik
Kondisi geografis Indonesia yang terdiri atas pulau-pulau yang kecil dan banyak yang terpencil menyebabkan sulit untuk dijangkau oleh jaringan listrik yang bersifat terpusat. Untuk memenuhi kebutuhan energi di daerah-daerah semacam ini, salah satu jenis energi yang potensial untuk dikembangkan adalah energi surya. Dengan demikian, energi surya dapat dimanfaatkan untuk p enyedian listrik dalam rangka mempercepat rasio elektrifikasi desa.
Selain dapat digunakan untuk program listrik perdesaan, peluang pemanfaatan energi surya lainnnya adalah:
• Lampu penerangan jalan dan lingkungan;
• Penyediaan listrik untuk rumah peribadatan. SESF sangat ideal untuk dipasang di tempat-tempat ini karena kebutuhannya relatif kecil. Dengan SESF 100 /120Wp sudah cukup untuk keperluan penerangan dan pengeras suara;
• Penyediaan listrik untuk sarana umum. Dengan daya kapasitas 400 Wp sudah cukup untuk memenuhi listrik sarana umum;
• Penyediaan listrik untuk sarana pelayanan kesehatan, seperti: rumah sakit, Puskesmas, Posyandu, dan Rumah Bersalin;
• Penyediaan listrik untuk Kantor Pelayanan Umum Pemerintah. Tujuan pemanfaatan SESF pada kantor pelayanan umum adalah untuk membantu usaha konservasi energi dan mambantu PLN mengurangi beban puncak disiang hari;
• Untuk pompa air ( solar power supply for waterpump ) yang digunakan untuk pengairan irigasi atau sumber air bersih (air minum).
Kendala Pengembangan Fotovoltaik di Indonesia
• Kendala yang dihadapi dalam pengembangan energi surya fotovoltaik adalah:
• Harga modul surya yang merupakan komponen utama SESF masih mahal mengakibatkan harga SESF menjadi mahal, sehingga kurangnya minat lembaga keuangan untuk memberikan kredit bagi pengembangan SEEF;
• Sulit untuk mendapatkan suku cadang dan air accu , khususnya di daerah perdesaan, menyebabkan SESF cepat rusak;
• Pemasangan SESF di daerah perdesaan pada umumnya tidak memenuhi standar teknis yang telah ditentukan, sehingga kinerja sistem tidak optimal dan cepat rusak.;
• Pada umumnya, penerapan SESF dilaksanakan di daerah perdesaan yang sebagian besar daya belinya masih rendah, sehingga pengembangan SESF sangat tergantung pada program Pemerintah;
• Belum ada industri pembuatan sel surya di Indonesia, sehingga ketergantungan pada impor sangat tinggi. Akibatnya, dengan menurunnya nilai tukar rupiah terhadap dolar menyebabkan harga modul surya menjadi semakin mahal.
2. TEKNOLOGI ENERGI SURYA TERMAL
Selama ini, pemanfaatan energi surya termal di Indonesia masih dilakukan secara tradisional. Para petani dan nelayan di Indonesia memanfaatkan energi surya untuk mengeringkan hasil pertanian dan perikanan secara langsung.
Teknologi dan Kemampuan Nasional
Berbagai teknologi pemanfaatan energi surya termal untuk aplikasi skala rendah (temperatur kerja lebih kecil atau hingga 60 o C) dan skala menengah (temperatur kerja antara 60 hingga 120 o C) telah dikuasai dari rancang-bangun, konstruksi hingga manufakturnya secara nasional. Secara umum, teknologi surya termal yang kini dapat dimanfaatkan termasuk dalam teknologi sederhana hingga madya. Beberapa teknologi untuk aplikasi skala rendah dapat dibuat oleh bengkel pertukangan kayu/besi biasa. Untuk aplikasi skala menengah dapat dilakukan oleh industri manufaktur nasional.
Beberapa peralatan yang telah dikuasai perancangan dan produksinya seperti sistem atau unit berikut:
• Pengering pasca panen (berbagai jenis teknologi);
• Pemanas air domestic;
• Pemasak/oven;
• Pompa air (dengan Siklus Rankine dan fluida kerja Isopentane );
• Penyuling air ( Solar Distilation/Still );
• Pendingin (radiatif, absorpsi, evaporasi, termoelektrik, kompressip, tipe jet);
• Sterilisator surya;
• Pembangkit listrik dengan menggunakan konsentrator dan fluida kerja dengan titik didih rendah.
Untuk skala kecil dan teknologi yang sederhana, kandungan lokal mencapai 100 %, sedangkan untuk sistem dengan skala industri (menengah) dan menggunakan teknologi tinggi (seperti pemakaian Kolektor Tabung Hampa atau Heat Pipe ), kandungan lokal minimal mencapai 50%.
Sasaran pengembangan energi surya termal di Indonesia adalah sebagai berikut:
• Meningkatnya kapasitas terpasang sistem energi surya termal, khususnya untuk pengering hasil pertanian, kegiatan produktif lainnya, dan sterilisasi di Puskesmas.
• Tercapainya tingkat komersialisasi berbagai teknologi energi surya thermal dengan kandungan lokal yang tinggi.
Strategi Pengembangan Energi Surya Termal
• Strategi pengembangan energi surya termal di Indonesia adalah sebagai berikut: Mengarahkan pemanfaatan energi surya termal untuk kegiatan produktif, khususnya untuk kegiatan agro industri.
• Mendorong keterlibatan swasta dalam pengembangan teknologi surya termal.
• Mendor ong terciptanya sistem dan pola pendanaan yang efektif.
• Mendorong keterlibatan dunia usaha untuk mengembangkan surya termal.
Program pengembangan energi surya termal di Indonesia adalah sebagai berikut:
• Melakukan inventarisasi, identifikasi dan pemetaan potensi serta aplikasi teknologi fototermik secara berkelanjutan.
• Melakukan diseminasi dan alih teknologi dari pihak pengembang kepada pemakai (agro-industri, gedung komersial, dan lain-lain) dan produsen nasional (manufaktur, bengkel mekanik, dan lain-lain) melalui forum komunikasi, pendidikan dan pelatihan dan proyek-proyek percontohan.
• Melaksanakan standarisasi nasional komponen dan sistem teknologi fototermik.
• Mengkaji skema pembiayaan dalam rangka pengembangan manufaktur nasional.
• Meningkatkan kegiatan penelitian dan pengembangan untuk berbagai teknologi fototermik.
• Meningkatkan produksi lokal secara massal dan penjajagan untuk kemungkinan ekspor.
• Pengembangan teknologi fototermik suhu tinggi, seperti: pembangkitan listrik, mesin stirling , dan lain-lain.
Peluang Pemanfaatan Energi Surya Termal
Prospek teknologi energi surya termal cukup besar, terutama untuk mendukung peningkatan kualitas pasca-panen komoditi pertanian, untuk bangunan komersial atau perumahan di perkotaan. Prospek pemanfaatannya dalam sektor-sektor masyarakat, yaitu:
• Industri, khususnya agro-industri dan industri pedesaan, yaitu untuk penanganan pasca-panen hasil-hasil pertanian, seperti: pengeringan (komoditi pangan, perkebunan, perikanan/peternakan, kayu olahan) dan juga pendinginan (ikan, buah dan sayuran);
• Bangunan komersial atau perkantoran, yaitu: untuk pengkondisian ruangan ( Solar Passive Building , AC) dan pemanas air;
• Rumah tangga, seperti: untuk pemanas air dan oven/ cooker ;
• PUSKESMAS terpencil di pedesaan, yaitu: untuk sterilisator, refrigerator vaksin dan pemanas air.
Kendala utama yang dihadapi dalam pengembangan surya termal adalah:
• Teknologi energi surya termal untuk memasak dan mengeringkan hasil pertanian masih sangat terbatas. Akan tetapi, sebagai pemanas air, energi surya termal sudah mencapai tahap komersial. Teknologi surya termal masih belum berkembang karena sosialisasi ke masyarakat luas masih sangat rendah;
• Daya beli masyarakat rendah, walaupun harganya relatif murah;
• Sumber daya manusia (SDM) di bidang surya termal masih sangat terbatas. Saat ini, SDM hanya tersedia di Pulau Jawa dan terbatas lingkungan perguruan
sumber: ESDM dan gerbangmultindo, dengan beberapa editing.
Tuesday, November 4, 2008
Fenomena Elektrostatis dan Tegangan Listrik
Muatan listrik adalah salah satu sifat dasar dari partikel elementer tertentu. Terdapat dua jenis muatan, muatan positif dan muatan negatif. Muatan positif pada bahan dibawa oleh proton, sedangkan muatan negatif oleh elektron. Muatan yang bertanda sama saling tolak menolak, muatan dengan tanda berbeda saling tarik menarik seperti dalam gambar-1.1.
Satuan muatan ”Coulomb (C)”, muatan proton adalah +1,6 x 10E-19C, sedangkan muatan elektron -1,6x 10E-19C. Prinsip kekekalan menjadikan muatan selalu konstan. Bila suatu benda diubah menjadi energi, sejumlah muatan positif dan negatif yang sama akan hilang.

Gambar 1.1 Sifat muatan listrik dan gambar 1.2 Fenomena elektrostatis.
Sebatang plastik digosokkan pada kain beberapa saat. Dekatkan batang plastik pada potongan kertas kecil. Yang terjadi potongan kertas kecil akan menempel ke batang plastik.
Kejadian diatas menunjukkan fenomena muatan elektrostatis, dimana batang plastik bermuatan positif menarik potongan kertas yang bermuatan negatif. Dua benda yang muatannya berbeda akan saling tarik menarik satu dengan lainnya. Batang plastik digantung bebas dengan benang, batang plastik lainnya digosokkan dengan bulu binatang dan dekatkan ke batang plastik tergantung (gambar-1.3), yang terjadi kedua batang benda saling tolak menolak. Artinya kedua batang plastik memiliki muatan yang sama dan saling tolak menolak.

Gambar 1.3 dan 1.4 Fenomena muatan listrik antar dua benda.
Batang plastik digantung bebas dengan benang. Batang kaca digosokkan dengan kain sutra dan dekatkan ke batang plastik tergantung (gambar 1.4). Yang terjadi kedua batang benda saling tarik menarik. Artinya batang plastik dan batang gelas memiliki muatan yang berbeda dan saling tarik menarik.
Persamaan muatan listrik :
Q = n.e
Q Muatan listrik (Coulomb)
n Jumlah elektron
e Muatan elektro -1,6 x 10E-19C
Contoh : Muatan listrik -1C, hitung jumlah elektron didalamnya
Jawaban :
Q = n.e
n Q e= -1/-1,6. 10E-19 = 6,25. 10E18
Satu Coulomb adalah total muatan yang mengandung 6,25. 10E18 elektron
Fenomena elektrostatis ada disekitar kita, muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10E-19C, sedangkan muatan elektron -1,6x 10E-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik.
1.2. Generator Elektrostatis Van de Graf
Robert J Van de Graf menciptakan alat generator elektrostatis (lihat gambar 1.5) Prinsip kerjanya ada dua roda poly yang dipasang sebuah sabuk non-konduktor. Roda poly atas diberikan selubung yang bisa menghasilkan muatan positif. Roda poly diputar searah jarum jam sehingga sabuk bergerak. Sabuk akan menyentuh konduktor runcing, muatan elektrostatis positif akan berkumpul dibola bulat bagian kiri. Logam bulat bermuatan positif dan selubung yang bermuatan negatif akan muncul garis medan elektrostatis.

Gambar 1.5 Generator elektrostatis Van de Graff
1.3. Tegangan Listrik
Tegangan atau beda potensial antara dua titik, adalah usaha yang dibutuhkan untuk membawa muatan satu coulomb dari satu titik ke titik lainnya.
sepert i digambarkan dibawah ini.

gambar 1.6 model visual tegangan.
1.Dua bola yang bermuatan positif dan bermuatan negatif, karena muatan keduanya sangat lemah dimana beda potensial antara keduanya mendekati nol, maka kedua bola tidak terjadi interaksi, kedua bola hanya diam saja (gambar 1.6a).
2.Dua buah bola yang masing-masing bermuatan positif, dan negatif. Dengan muatan berbeda kedua bola akan saling tarik menarik. Untuk memisahkan kedua bola, diperlukan usaha F1 (gambar 1.6b).
3.Kejadian dua buah bola bermuatan positif dan negatif, dipisahkan jaraknya dua kali jarak pada contoh no.2, untuk itu diperlukan usaha F2 sebesar 2.F1 (gambar 1.6c).
4. Ada empat bola, satu bola visual tegangan bermuatan positif dan satu bola bermuatan negatif, dua bola lainnya tidak bermuatan. Jika dipisahkan seperti contoh no.3, diperlukan usaha F2 sebesar 2.F1 (gambar 1.6d).
Persamaan tegangan :
U = W/Q [U] = Nm/C = VAs/As = V
dimana;
U =Tegangan (V)
W = Usaha (Nm, Joule)
Q = Muatan (C)
Satu Volt adalah beda potensial antara dua titik pada saat melakukan usaha sebesar satu joule untuk memindahkan muatan listrik sebesar satu coulomb.
Contoh : Jika diperlukan usaha 50 Joule untuk setiap memindahkan muatan
sebesar 10 Coulomb. Hitung tegangan yang ditimbulkan ?
Jawaban :
U = W/Q = 50Joule/10Coulomb = 5 V
Satuan muatan ”Coulomb (C)”, muatan proton adalah +1,6 x 10E-19C, sedangkan muatan elektron -1,6x 10E-19C. Prinsip kekekalan menjadikan muatan selalu konstan. Bila suatu benda diubah menjadi energi, sejumlah muatan positif dan negatif yang sama akan hilang.

Gambar 1.1 Sifat muatan listrik dan gambar 1.2 Fenomena elektrostatis.
Sebatang plastik digosokkan pada kain beberapa saat. Dekatkan batang plastik pada potongan kertas kecil. Yang terjadi potongan kertas kecil akan menempel ke batang plastik.
Kejadian diatas menunjukkan fenomena muatan elektrostatis, dimana batang plastik bermuatan positif menarik potongan kertas yang bermuatan negatif. Dua benda yang muatannya berbeda akan saling tarik menarik satu dengan lainnya. Batang plastik digantung bebas dengan benang, batang plastik lainnya digosokkan dengan bulu binatang dan dekatkan ke batang plastik tergantung (gambar-1.3), yang terjadi kedua batang benda saling tolak menolak. Artinya kedua batang plastik memiliki muatan yang sama dan saling tolak menolak.

Gambar 1.3 dan 1.4 Fenomena muatan listrik antar dua benda.
Batang plastik digantung bebas dengan benang. Batang kaca digosokkan dengan kain sutra dan dekatkan ke batang plastik tergantung (gambar 1.4). Yang terjadi kedua batang benda saling tarik menarik. Artinya batang plastik dan batang gelas memiliki muatan yang berbeda dan saling tarik menarik.
Persamaan muatan listrik :
Q = n.e
Q Muatan listrik (Coulomb)
n Jumlah elektron
e Muatan elektro -1,6 x 10E-19C
Contoh : Muatan listrik -1C, hitung jumlah elektron didalamnya
Jawaban :
Q = n.e
n Q e= -1/-1,6. 10E-19 = 6,25. 10E18
Satu Coulomb adalah total muatan yang mengandung 6,25. 10E18 elektron
Fenomena elektrostatis ada disekitar kita, muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10E-19C, sedangkan muatan elektron -1,6x 10E-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik.
1.2. Generator Elektrostatis Van de Graf
Robert J Van de Graf menciptakan alat generator elektrostatis (lihat gambar 1.5) Prinsip kerjanya ada dua roda poly yang dipasang sebuah sabuk non-konduktor. Roda poly atas diberikan selubung yang bisa menghasilkan muatan positif. Roda poly diputar searah jarum jam sehingga sabuk bergerak. Sabuk akan menyentuh konduktor runcing, muatan elektrostatis positif akan berkumpul dibola bulat bagian kiri. Logam bulat bermuatan positif dan selubung yang bermuatan negatif akan muncul garis medan elektrostatis.

Gambar 1.5 Generator elektrostatis Van de Graff
1.3. Tegangan Listrik
Tegangan atau beda potensial antara dua titik, adalah usaha yang dibutuhkan untuk membawa muatan satu coulomb dari satu titik ke titik lainnya.
sepert i digambarkan dibawah ini.

gambar 1.6 model visual tegangan.
1.Dua bola yang bermuatan positif dan bermuatan negatif, karena muatan keduanya sangat lemah dimana beda potensial antara keduanya mendekati nol, maka kedua bola tidak terjadi interaksi, kedua bola hanya diam saja (gambar 1.6a).
2.Dua buah bola yang masing-masing bermuatan positif, dan negatif. Dengan muatan berbeda kedua bola akan saling tarik menarik. Untuk memisahkan kedua bola, diperlukan usaha F1 (gambar 1.6b).
3.Kejadian dua buah bola bermuatan positif dan negatif, dipisahkan jaraknya dua kali jarak pada contoh no.2, untuk itu diperlukan usaha F2 sebesar 2.F1 (gambar 1.6c).
4. Ada empat bola, satu bola visual tegangan bermuatan positif dan satu bola bermuatan negatif, dua bola lainnya tidak bermuatan. Jika dipisahkan seperti contoh no.3, diperlukan usaha F2 sebesar 2.F1 (gambar 1.6d).
Persamaan tegangan :
U = W/Q [U] = Nm/C = VAs/As = V
dimana;
U =Tegangan (V)
W = Usaha (Nm, Joule)
Q = Muatan (C)
Satu Volt adalah beda potensial antara dua titik pada saat melakukan usaha sebesar satu joule untuk memindahkan muatan listrik sebesar satu coulomb.
Contoh : Jika diperlukan usaha 50 Joule untuk setiap memindahkan muatan
sebesar 10 Coulomb. Hitung tegangan yang ditimbulkan ?
Jawaban :
U = W/Q = 50Joule/10Coulomb = 5 V
Monday, November 3, 2008
Pengukuran Medan Listrik dan Medan Magnet di bawah SUTET 500kV
Sampai sekarang masyarakat masih khawatir tinggal dibawah Saluran Udara Tegangan Ekstra Tinggi (SUTET) 500 kV. Ketakutan ini tampaknya berawal dari pernyataan ahli Epidemiologi bahwa SUTET dapat membangkitkan medan listrik dan medan magnet yang berpengaruh buruk terhadap kesehatan manusia. Masyarakat bahkan ada yang mengeluh pusing-pusing walaupun belum dapat dibuktikan penyebabnya.
Kehadiran medan listrik dan medan magnet di sekitar kehidupan manusia tidak dapat dirasakan oleh indera manusia, kecuali jika intensitasnya cukup besar dan terasa hanya bagi orang yang hipersensitif saja. Medan listrik dan medan magnet termasuk kelompok radiasi non-pengion. Radiasi ini relatif tidak berbahaya, berbeda sama sekali dengan radiasi jenis pengion seperti radiasi nuklir atau radiasi sinar rontgen.
Medan listrik dan medan magnet sudah ada sejak bumi kita ini terbentuk. Awan yang mengandung potensial air, terdapat medan listrik yang besarnya antara 3000 - 30.000 V/m. Demikian juga bumi secara alamiah bermedan listrik (100 - 500 V/m) dan bermedan magnet (0,004 - 0,007 mT). Di dalam rumah, di tempat kerja, di kantor atau di bengkel terdapat medan listrik dan medan magnet buatan. Medan listrik dan medan magnet ini biasanya berasal dari instalasi dan peralatan listrik antara lain berasal dari : sistem instalasi dalam rumah, lemari pendingin, AC, kipas angin, pompa air, televisi, mesin tik elektronik, mesin photocopy, komputer danprinter, mesin las, kompresor, saluran udara tegangan rendah/menengah (SUTR/M) yang berdekatan, dan lain-lain. Pada sistem instalasi yang bertegangan dan berarus selalu timbul medan listrik. Tetapi medan listrik ini sudah melemah karena jaraknya cukup jauh dari sumber.
Di bawah SUTR dan SUTM kuat medan magnet bervariasi antara 0,1 – 3,5 mikrotesla. Di dalam bangunan rumah, kantor, bengkel atau pabrik, medan magnet karena saluran udara ini jauh lebih lemah lagi. Diusahakan dalam pemilihan jalur SUTET tidak melintas daerah pemukiman, hutan lindung maupun cagar alam. Di beberapa daerah pemukiman yang padat mungkin tidak bisa dihindari jalur SUTET untuk melintas, tetapi baik medan listrik maupun medan magnet tidak boleh diatas ambang batas yang diperbolehkan.
Medan Listrik di bawah jaringan dapat menimbulkan beberapa hal, antara lain :
• menimbulkan suara/bunyi mendesis akibat ionisasi pada permukaan penghantar (konduktor) yang kadang disertai cahaya keunguan,
• bulu/rambut berdiri pada bagian badan yang terpajan akibat gaya tarik medan listrik yang kecil,
• lampu neon dan tes-pen dapat menyala tetapi redup, akibat mudahnya gas neon di dalam tabung lampu dan tes-pen terionisasi,
• kejutan lemah pada sentuhan pertama terhadap benda-benda yang mudah menghantar listrik (seperti atap seng, pagar besi, kawat jemuran dan badan mobil).
Hubungan Medan Listrik dan Medan Magnet dengan Kesehatan
Kekhawatiran akan pengaruh buruk medan listrik dan medan magnet terhadap kesehatan dipicu oleh publikasi hasil penelitian yang dilakukan oleh Wertheimer dan Leeper pada tahun 1979 di Amerika. Penelitian tersebut menggambarkan adanya hubungan kenaikan risiko kematian akibat kanker pada anak dengan jarak tempat tinggal yang dekat jaringan transmisi listrik tegangan tinggi. Banyak ahli yang meragukan hasil penelitian tersebut dengan menunjuk berbagai kelemahannya, antara lain tidak adanya data hasil pengukuran kuat medan listrik dan medan magnet yang mengenai kelompok anak-anak yang diteliti.
Koreksi yang dilakukan oleh peneliti lainnya seperti yang dilakukan oleh Savitz dan kawan-kawan serta temuan studi Fulton dan kawan-kawan, ternyata hubungan tersebut tidak ada. Hasil penelitian dengan metoda yang lebih disempurnakan pernah dilakukan oleh Maria Linett dan kawan-kawan dari National Cancer Institute -Amerika tahun 1997. Penelitian yang melibatkan lebih kurang 1200 anak ini melaporkan bahwa tidak ada hubungan antara kejadian leukemia pada anak yang terpajan medan listrik dan medan magnet dengan anak-anak yang tidak terpajan. Temuan ini mengukuhkan penolakan terhadap hasil penelitian yang dilakukan oleh Wertheimer dan Leeper tersebut.
Penelitian dengan menggunakan hewan percobaan pernah dilakukan sejak tahun 60-an dengan hasilnya bervariasi mulai dari gambaran yang tidak berpengaruh, adanya perubahan perilaku sampai pada pengaruh terjadinya cacat pada keturunan.
Sesungguhnya hasil penelitian pada hewan yang menunjukkan adanya pengaruh buruk tersebut diakibatkan oleh penggunaan kuat medan listrik atau medan magnet yang sangat besar dalam percobaan tersebut. Percobaan dengan kuat medan listrik dan medan magnet sampai pada tingkat yang menghasilkan kelainan tersebut memang diperlukan untuk mengetahui proses terjadinya gangguan tertentu sehingga dapat dipergunakan sebagai dasar penanggulangannya. Kuat medan listrik dan medan magnet yang digunakan pada percobaan tersebut hampir mustahil dapat dihasilkan dan terjadi di lingkungan sekitar kehidupan manusia. Pengaruh medan listrik dan medan magnet terhadap kesehatan sangat tergantung pada dosis yang diterimanya. Dosis yang kecil tentu tidak akan berpengaruh, bahkan penelitian yang dilakukan oleh Piekarsi dari negara bekas Uni Sovyet menunjukkan efek positif terhadap penyambungan tulang yang patah pada anjing percobaan.
Para ahli telah sepakat bahwa medan listrik dan medan magnet yang berasal dari jaringan listrik digolongkan sebagai frekuensi ekstrim rendah dengan konsekuensi kemampuan memindahkan energi sangat kecil, sehingga tidak mampu mempengaruhi ikatan kimia pembentuk sel-sel tubuh manusia. Disamping itu sel tubuh manusia mempunyai kuat medan listrik sekitar 10 juta Volt/m yang jauh lebih kuat dari medan listrik luar. Medan listrik dan medan magnet dengan frekuensi ekstrim rendah ini juga tidak mungkin menimbulkan efek panas seperti yang dapat terjadi pada efek medan elektromagnet gelombang mikro, frekuensi radio, dan frekuensi yang lebih tinggi seperti pada telepon seluler. Adanya sementara orang yang tinggal dekat dengan jaringan transmisi listrik melaporkan keluhan-keluhan seperti sakit kepala, pusing, berdebar dan susah tidur serta kelemahan seksual adalah bersifat subyektif, karena persepsi mereka yang kurang tepat.
Batas Pajanan Medan Listrik dan Medan Magnet
Kriteria yang dipakai dalam penentuan batas pajanan menggunakan rapat arus yang diinduksi dalam tubuh. Karena arus-arus induksi dalam tubuh tidak dapat dengan mudah diukur secara langsung maka penentuan batas pajanan diturunkan dari nilai kriteria arus induksi dalam tubuh berupa kuat medan listrik (E) yang tidak terganggu dan rapat fluks magnetik (B). Gampangnya misalnya saja suatu medan listrik yang homogen dengan kuat medan sebesar 10 kV/m akan menginduksi rapat arus efektif kurang dari 4 mA/m2 dengan rata-rata pengaliran arus di seluruh daerah kepada atau batang tubuh manusia (Berhardt, 1985 dan Kaune & Forsythe, 1985).
Suatu rapat fluks magnetik sebesar 0.5 mT pada 50/60 Hz akan menginduksi rapat arus efektif sekitar 1 mA/m2 pada keliling suatu loop jaringan tubuh yang berjejari 10 cm. UNEP, WHO dan IRPA pada tahun 1987 mengeluarkan suatu pernyataan mengenai nilai rapat arus induksi terhadap efek-efek biologis yang ditimbulkan akibat pajanan medan listrik dan medan magnet pada frekuensi 50/60HZ terhadap tubuh manusia sebagai berikut : antara 1 dan 10 mA/m2 tidak menimbulkan efek biologis yang berarti, antara 10 dan 100 mA/m2 menimbulkan efek biologis yang terbukti termasuk efek pada sistem penglihatan dan syaraf, antara 100 dan 1000 mA/m2 menimbulkan stimulasi pada jaringan-jaringan yang dapat dirangsang dan ada kemungkinan bahaya terhadap kesehatan dan, di atas 1000 mA/m2 dapat menimbulkan ekstrasistole dan fibrasi ventrikular dari jantung (bahaya akut terhadap kesehatan).
Sementara menunggu ditetapkannya Enviromental Health Criteria dari WHO mengenai medan elektromagnetik, Pemerintah akan mengadopsi rekomendasi international radiation protection association (IRPA) dan WHO 1990 untuk batas pajanan Medan Listrik dan Medan Magnet 50 - 60 Hz sebagai berikut :

Sumber : Rekomendasi IRPA, INIRC dan WHO tahun 1990
Standar medan listrik dan medan magnet 50/60 Hz di beberapa negara maju untuk tingkat pajanan terus menerus pada kelompok masyarakat umum (MU) dan kelompok pekerja (KP) adalah sebagai berikut:

Sumber : IRPA, 1991; Pakpahan, 1992 ; WHO, 1987
Di Indonesia, pengamanan terhadap pengaruh medan listrik dan medan magnet 50-60 Hz pada tegangan 115 V, diatur berdasarkan Peraturan Menteri Pertambangan dan Energi No. 01.P/47/MPE/ 1992, dengan ketentuan sebagai berikut:
untuk Medan Listrrik

Untuk Medan Magnet

Sumber : Departemen Pertambangan dan Energi (No. 01.P/47/MPE/1992)
Pengukuran Kuat medan Listrik SUTET 500 kV
Pengukuran medan listrik di bawah jaringan SUTET 500 kV sebagai fungsi jarak telah dilakukan dilapangan terbuka tanpa pepohonan pada andongan terendah di 4 lokasi di Ciledug, Cirata, Ungaran dan Gresik. Kuat medan yang diperoleh untuk Ciledug mencapai angka maksimum 4 kV/m pada titik dibawah konduktor phasa sejarak 10 meter dari pusat sumbu saluran, Cirata mencapai angka maksimum 17 kV/m pada titik sejarak 5 m, Ungaran mencapai angka maksimum 4,78 kV/m pada titik sejarak 15 m, dan Gresik mencapai angka maksimum 3,32 kV/m pada titik sejarak 20 m. Kuat medan listrik pada titik tengah antara dua deretan konduktor phasa diperoleh lebih kecil, dimana hal tersebut diakibatkan oleh penjumlahan vektoral medan listrik yang ditimbulkan oleh susunan konfigurasi konduktor phasa. Untuk konfigurasi yang lainnya diperoleh keadaan kuat medan listrik yang sedikit lebih tinggi. Menurut IRPA dan WHO, batasan pajanan kuat medan listrik yang diduga dapat menimbulkan efek biologis untuk umum adalah 5 kV/m, sedang hasil pengukuran dilapangan terbuka terhadap kuat medan listrik di bawah SUTET mencapai angka maksimum 4.78 kV/m (di Ungaran) pada titik sejarak 15 m, kecuali didaerah Cirata mencapai 17 kV/m tetapi ini merupakan tempat tebing dan curam yang tidak dilalui penduduk.
Pengukuran kuat medan Listrik di dalam rumah juga dilakukan di 3 lokasi pada posisi listrik hidup, dengan hasil pengukuran sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 kV/m; desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 kV/m; dan perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 kV/m. Kuat medan listrik di dalam rumah dalam posisi listrik menyala memperlihatkan harga yang kecil. Hal ini disebabkan oleh adanya redaman rumah terhadap pajanan medan listrik. Sedangkan pengukuran kuat medan listrik pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.
Kuat Medan Magnet SUTET 500 KV
Pengukuran kuat medan magnet dilakukan di lapangan terbuka tanpa adanya pengaruh keberadaan pohon-pohonan, rumah serta obyek-obyek lain. Pengukuran kuat medan untuk Ciledug mencapai angka maksimum 0,0021 mili Tesla dititik 0 meter (sejajar tower), Cirata mencapai angka maksimum 0,036 mili Tesla pada titik sejarak 0 m, Ungaran mencapai angka maksimum 0,00180 mili Tesla pada titik sejarak 0 m, sedang Gresik mencapai angka maksimum 0,0021 mili Tesla pada titik sejarak 0 m. Menurut IRPA dan WHO, batasan pajanan kuat medan magnet yang diduga dapat menimbulkan efek biologis untuk umum adalah 0,5 mili Tesla, sedang seperti diuraikan diatas kuat medan magnet di bawah SUTET 500 kV dilapangan terbuka mencapai harga maksimum 0,036 mili Tesla (di Cirata) pada titik 0 m sejajar tower. Jadi masih sangat jauh dibawah ambang batas yang ditetapkan. Pengukuran kuat medan magnet di tiga lokasi dilakukan pada posisi listrik nyala, diperoleh hasil sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 mili Tesla; di desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 mili Tesla; dan di perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 mili Tesla. Pengukuran kuat medan magnet di dalam rumah dengan posisi listrik nyala memperlihatkan harga yang kecil. Hal ini, sama seperti pada kasus pengukuran medan listrik, disebabkan pula oleh adanya redaman rumah terhadap pajanan medan magnet. Demikian juga pengukuran kuat medan magnet pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.
Pedoman Teknis Pengurangan Dampak Medan Listrik dan Medan Magnet
Dari penelitian yang sudah dilakukan ditemukan kuat medan listrik di halaman/luar rumah lebih tinggi dibandingkan dengan di dalam rumah, sehingga dalam rangka peningkatan kondisi lingkungan akibat adanya SUTET perlu diperhatikan hal-hal sebagai berikut : mengusahakan agar rumahnya berlangit-langit, menanam popohonan sebanyak mungkin disekitar rumah pada lahan yang kosong, bagian atap rumah terbuat dari atap logam, seharusnya ditanahkan (digroundkan), penduduk disarankan tidak berada diluar rumah terutama pada malam hari, karena pada saat itu arus yang mengalir pada kawat penghantar SUTET lebih tinggi dari pada siang hari.
Pengamanan terhadap arus peluahan elektrostatis perlu dilakukan untuk menghindari adanya pengutupan muatan yang akan terjadi pada benda terbuat dari bahan logam. Caranya yaitu dengan mentanahkan agar terjadi penetralan kembali semua benda terbuat dari bahan logam dengan ukuran cukup besar (contohnya kawat jemuran, kabal interkom, mobil dan sepeda motor), yang terletak dibawah SUTET. Hal ini dikarenakan untuk menghindari adanya pengutupan muatan yang akan terjadi pada objek tersebut, dengan mentanahkan maka akan terjadi penetralan kembali. Akibat adanya arus peluahan ini pengamanan yang harus dilakukan oleh penduduk adalah: disarankan tidak membuat jemuran yang atasnya bebas sama sekali dari pepohonan; disarankan membuat jemuran bukan berasal dari kawat dan tiang besi, (contoh : kayu, bambu, tali plastik) dan kalau terpaksa membuat jemuran yang menggunakan bahan konduktor maka harus di tanahkan; saluran interkom harus jauh dari SUTET; bila atap bukan dari bahan logam (genting, asbes, sirap) maka usahakan atap tersebut tidak terdapat bahan logam (misalnya antena TV, talang seng); jangan memasang antena TV atau radio (ORARI)di atap rumah; usahakan kendaraan bermotor (mobil, sepeda motor dll) ditanahkan untuk menghilangkan medan elektrostatis akibat induksi SUTET; usahakan tidak terdapat bahan-bahan yang bersifat konduktor berada di teras rumah yang bertingkat di bawah SUTET; Sering mungkin melakukan pengukuran tegangan dengan testpen pada objek yang dicurigai bertegangan.
Pengamanan Terhadap Induksi Tegangan Lebih Transien Pada Peralatan Listrik dapat dilaksanakan dengan pemasangan titik nol yang ditanahkan. Tegangan induksi pada peralatan di bawah SUTET aman bagi manusia.
Pengamanan Terhadap Tegangan Langkah dan Tegangan Sentuh disarankan penduduk agar masyarakat tidak masuk didalam daerah sekitar pentanahan kaki menara yang telah diberi pagar oleh PLN.
Pengamanan Terhadap Bahaya Putusnya Kawat Saluran Transisi dilakukan agar pemukiman yang dilintasi SUTET perlu ditanami pepohonan, tetapi perlu di pantau ketinggiannya dan batas-batas ruang bebas, yaitu puncak pohon berjarak minimum 15 M dari kabel SUTET terbawah. Bahaya putusnya kawat SUTET belum pernah dijumpai, yang dijumpai adalah pecahnya isolator, oleh sebab itu digunakan isolator ganda dan dengan tanaman pohon dibawah SUTET yang dipantau ketinggiannya maka bahaya seandainya kawat SUTET putus dapat dieleminir.
Pengamanan terhadap loncatan listrik keinstalasi diatas atap bangunan diadasarkan pada Peraturan Menteri Pertambangan dan Energi No. 01.P/47/MPE/1992, yaitu agar jarak minimum titik tertinggi bangunan (pohon) terhadap titik terendah kawat penghantar SUTET 500 kV harus memenuhi ketentuan sbb : Jarak minimum titik tertinggi bangunan tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum titik tertinggi jembatan besi titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum jalan kereta api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum lapangan terbuka terhadap titik terendah kawat penghantar SUTET 500 kV adalah 11 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum jalan raya terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m. Ruang bebas adalah ruang sekeliling penghantar yang dibentuk oleh jarak bebas minimum sepanjang SUTT atau SUTET yang didalam ruang itu harus dibebaskan dari benda-benda dan kegiatan lainnya. Ruang bebas ditetapkan berdeda-beda dalam luas dan bentuk. Sementara ruang aman adalah ruang yang berada di luar ruang bebas. Lahan atau tanahnya yang masih dapat dimanfaatkan. Dalam ruang aman pengaruh kuat medan listrik dan kuat medan magnet sudah dipertimbangkan dengan mengacu kepada peraturan yang berlaku. Ruang bebas dan ruang aman dapat diatur besarnya sesuai kebutuhan pada saat mempersiapkan rancangbangun. Ruang aman dapat diperluas dengan cara meninggikan menara dan atau mempendek jarak antara menara, sehingga bila ada pemukiman yang akan dilintasi SUTT / SUTET yang akan dibangun berada di dalam ruang yang aman.
(Sumber Laporan Evaluasi Teknis dan Sosialisasi pada Masyarakat tentang Dampak Medan Listrik dan Medan Magnet di Bawah SUTT/SUTET, Proyek Penelitian Teknologi Energi dan Ketenagalistrikan, Ditjen Listrik dan Pengembngan Energi)
Oleh Ir. Nanan Tribuana adalah staf Ditjen Listrik dan Pengembngan Energi, Jakarta
Kehadiran medan listrik dan medan magnet di sekitar kehidupan manusia tidak dapat dirasakan oleh indera manusia, kecuali jika intensitasnya cukup besar dan terasa hanya bagi orang yang hipersensitif saja. Medan listrik dan medan magnet termasuk kelompok radiasi non-pengion. Radiasi ini relatif tidak berbahaya, berbeda sama sekali dengan radiasi jenis pengion seperti radiasi nuklir atau radiasi sinar rontgen.
Medan listrik dan medan magnet sudah ada sejak bumi kita ini terbentuk. Awan yang mengandung potensial air, terdapat medan listrik yang besarnya antara 3000 - 30.000 V/m. Demikian juga bumi secara alamiah bermedan listrik (100 - 500 V/m) dan bermedan magnet (0,004 - 0,007 mT). Di dalam rumah, di tempat kerja, di kantor atau di bengkel terdapat medan listrik dan medan magnet buatan. Medan listrik dan medan magnet ini biasanya berasal dari instalasi dan peralatan listrik antara lain berasal dari : sistem instalasi dalam rumah, lemari pendingin, AC, kipas angin, pompa air, televisi, mesin tik elektronik, mesin photocopy, komputer danprinter, mesin las, kompresor, saluran udara tegangan rendah/menengah (SUTR/M) yang berdekatan, dan lain-lain. Pada sistem instalasi yang bertegangan dan berarus selalu timbul medan listrik. Tetapi medan listrik ini sudah melemah karena jaraknya cukup jauh dari sumber.
Di bawah SUTR dan SUTM kuat medan magnet bervariasi antara 0,1 – 3,5 mikrotesla. Di dalam bangunan rumah, kantor, bengkel atau pabrik, medan magnet karena saluran udara ini jauh lebih lemah lagi. Diusahakan dalam pemilihan jalur SUTET tidak melintas daerah pemukiman, hutan lindung maupun cagar alam. Di beberapa daerah pemukiman yang padat mungkin tidak bisa dihindari jalur SUTET untuk melintas, tetapi baik medan listrik maupun medan magnet tidak boleh diatas ambang batas yang diperbolehkan.
Medan Listrik di bawah jaringan dapat menimbulkan beberapa hal, antara lain :
• menimbulkan suara/bunyi mendesis akibat ionisasi pada permukaan penghantar (konduktor) yang kadang disertai cahaya keunguan,
• bulu/rambut berdiri pada bagian badan yang terpajan akibat gaya tarik medan listrik yang kecil,
• lampu neon dan tes-pen dapat menyala tetapi redup, akibat mudahnya gas neon di dalam tabung lampu dan tes-pen terionisasi,
• kejutan lemah pada sentuhan pertama terhadap benda-benda yang mudah menghantar listrik (seperti atap seng, pagar besi, kawat jemuran dan badan mobil).
Hubungan Medan Listrik dan Medan Magnet dengan Kesehatan
Kekhawatiran akan pengaruh buruk medan listrik dan medan magnet terhadap kesehatan dipicu oleh publikasi hasil penelitian yang dilakukan oleh Wertheimer dan Leeper pada tahun 1979 di Amerika. Penelitian tersebut menggambarkan adanya hubungan kenaikan risiko kematian akibat kanker pada anak dengan jarak tempat tinggal yang dekat jaringan transmisi listrik tegangan tinggi. Banyak ahli yang meragukan hasil penelitian tersebut dengan menunjuk berbagai kelemahannya, antara lain tidak adanya data hasil pengukuran kuat medan listrik dan medan magnet yang mengenai kelompok anak-anak yang diteliti.
Koreksi yang dilakukan oleh peneliti lainnya seperti yang dilakukan oleh Savitz dan kawan-kawan serta temuan studi Fulton dan kawan-kawan, ternyata hubungan tersebut tidak ada. Hasil penelitian dengan metoda yang lebih disempurnakan pernah dilakukan oleh Maria Linett dan kawan-kawan dari National Cancer Institute -Amerika tahun 1997. Penelitian yang melibatkan lebih kurang 1200 anak ini melaporkan bahwa tidak ada hubungan antara kejadian leukemia pada anak yang terpajan medan listrik dan medan magnet dengan anak-anak yang tidak terpajan. Temuan ini mengukuhkan penolakan terhadap hasil penelitian yang dilakukan oleh Wertheimer dan Leeper tersebut.
Penelitian dengan menggunakan hewan percobaan pernah dilakukan sejak tahun 60-an dengan hasilnya bervariasi mulai dari gambaran yang tidak berpengaruh, adanya perubahan perilaku sampai pada pengaruh terjadinya cacat pada keturunan.
Sesungguhnya hasil penelitian pada hewan yang menunjukkan adanya pengaruh buruk tersebut diakibatkan oleh penggunaan kuat medan listrik atau medan magnet yang sangat besar dalam percobaan tersebut. Percobaan dengan kuat medan listrik dan medan magnet sampai pada tingkat yang menghasilkan kelainan tersebut memang diperlukan untuk mengetahui proses terjadinya gangguan tertentu sehingga dapat dipergunakan sebagai dasar penanggulangannya. Kuat medan listrik dan medan magnet yang digunakan pada percobaan tersebut hampir mustahil dapat dihasilkan dan terjadi di lingkungan sekitar kehidupan manusia. Pengaruh medan listrik dan medan magnet terhadap kesehatan sangat tergantung pada dosis yang diterimanya. Dosis yang kecil tentu tidak akan berpengaruh, bahkan penelitian yang dilakukan oleh Piekarsi dari negara bekas Uni Sovyet menunjukkan efek positif terhadap penyambungan tulang yang patah pada anjing percobaan.
Para ahli telah sepakat bahwa medan listrik dan medan magnet yang berasal dari jaringan listrik digolongkan sebagai frekuensi ekstrim rendah dengan konsekuensi kemampuan memindahkan energi sangat kecil, sehingga tidak mampu mempengaruhi ikatan kimia pembentuk sel-sel tubuh manusia. Disamping itu sel tubuh manusia mempunyai kuat medan listrik sekitar 10 juta Volt/m yang jauh lebih kuat dari medan listrik luar. Medan listrik dan medan magnet dengan frekuensi ekstrim rendah ini juga tidak mungkin menimbulkan efek panas seperti yang dapat terjadi pada efek medan elektromagnet gelombang mikro, frekuensi radio, dan frekuensi yang lebih tinggi seperti pada telepon seluler. Adanya sementara orang yang tinggal dekat dengan jaringan transmisi listrik melaporkan keluhan-keluhan seperti sakit kepala, pusing, berdebar dan susah tidur serta kelemahan seksual adalah bersifat subyektif, karena persepsi mereka yang kurang tepat.
Batas Pajanan Medan Listrik dan Medan Magnet
Kriteria yang dipakai dalam penentuan batas pajanan menggunakan rapat arus yang diinduksi dalam tubuh. Karena arus-arus induksi dalam tubuh tidak dapat dengan mudah diukur secara langsung maka penentuan batas pajanan diturunkan dari nilai kriteria arus induksi dalam tubuh berupa kuat medan listrik (E) yang tidak terganggu dan rapat fluks magnetik (B). Gampangnya misalnya saja suatu medan listrik yang homogen dengan kuat medan sebesar 10 kV/m akan menginduksi rapat arus efektif kurang dari 4 mA/m2 dengan rata-rata pengaliran arus di seluruh daerah kepada atau batang tubuh manusia (Berhardt, 1985 dan Kaune & Forsythe, 1985).
Suatu rapat fluks magnetik sebesar 0.5 mT pada 50/60 Hz akan menginduksi rapat arus efektif sekitar 1 mA/m2 pada keliling suatu loop jaringan tubuh yang berjejari 10 cm. UNEP, WHO dan IRPA pada tahun 1987 mengeluarkan suatu pernyataan mengenai nilai rapat arus induksi terhadap efek-efek biologis yang ditimbulkan akibat pajanan medan listrik dan medan magnet pada frekuensi 50/60HZ terhadap tubuh manusia sebagai berikut : antara 1 dan 10 mA/m2 tidak menimbulkan efek biologis yang berarti, antara 10 dan 100 mA/m2 menimbulkan efek biologis yang terbukti termasuk efek pada sistem penglihatan dan syaraf, antara 100 dan 1000 mA/m2 menimbulkan stimulasi pada jaringan-jaringan yang dapat dirangsang dan ada kemungkinan bahaya terhadap kesehatan dan, di atas 1000 mA/m2 dapat menimbulkan ekstrasistole dan fibrasi ventrikular dari jantung (bahaya akut terhadap kesehatan).
Sementara menunggu ditetapkannya Enviromental Health Criteria dari WHO mengenai medan elektromagnetik, Pemerintah akan mengadopsi rekomendasi international radiation protection association (IRPA) dan WHO 1990 untuk batas pajanan Medan Listrik dan Medan Magnet 50 - 60 Hz sebagai berikut :

Sumber : Rekomendasi IRPA, INIRC dan WHO tahun 1990
Standar medan listrik dan medan magnet 50/60 Hz di beberapa negara maju untuk tingkat pajanan terus menerus pada kelompok masyarakat umum (MU) dan kelompok pekerja (KP) adalah sebagai berikut:
Sumber : IRPA, 1991; Pakpahan, 1992 ; WHO, 1987
Di Indonesia, pengamanan terhadap pengaruh medan listrik dan medan magnet 50-60 Hz pada tegangan 115 V, diatur berdasarkan Peraturan Menteri Pertambangan dan Energi No. 01.P/47/MPE/ 1992, dengan ketentuan sebagai berikut:
untuk Medan Listrrik
Untuk Medan Magnet
Sumber : Departemen Pertambangan dan Energi (No. 01.P/47/MPE/1992)
Pengukuran Kuat medan Listrik SUTET 500 kV
Pengukuran medan listrik di bawah jaringan SUTET 500 kV sebagai fungsi jarak telah dilakukan dilapangan terbuka tanpa pepohonan pada andongan terendah di 4 lokasi di Ciledug, Cirata, Ungaran dan Gresik. Kuat medan yang diperoleh untuk Ciledug mencapai angka maksimum 4 kV/m pada titik dibawah konduktor phasa sejarak 10 meter dari pusat sumbu saluran, Cirata mencapai angka maksimum 17 kV/m pada titik sejarak 5 m, Ungaran mencapai angka maksimum 4,78 kV/m pada titik sejarak 15 m, dan Gresik mencapai angka maksimum 3,32 kV/m pada titik sejarak 20 m. Kuat medan listrik pada titik tengah antara dua deretan konduktor phasa diperoleh lebih kecil, dimana hal tersebut diakibatkan oleh penjumlahan vektoral medan listrik yang ditimbulkan oleh susunan konfigurasi konduktor phasa. Untuk konfigurasi yang lainnya diperoleh keadaan kuat medan listrik yang sedikit lebih tinggi. Menurut IRPA dan WHO, batasan pajanan kuat medan listrik yang diduga dapat menimbulkan efek biologis untuk umum adalah 5 kV/m, sedang hasil pengukuran dilapangan terbuka terhadap kuat medan listrik di bawah SUTET mencapai angka maksimum 4.78 kV/m (di Ungaran) pada titik sejarak 15 m, kecuali didaerah Cirata mencapai 17 kV/m tetapi ini merupakan tempat tebing dan curam yang tidak dilalui penduduk.
Pengukuran kuat medan Listrik di dalam rumah juga dilakukan di 3 lokasi pada posisi listrik hidup, dengan hasil pengukuran sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 kV/m; desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 kV/m; dan perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 kV/m. Kuat medan listrik di dalam rumah dalam posisi listrik menyala memperlihatkan harga yang kecil. Hal ini disebabkan oleh adanya redaman rumah terhadap pajanan medan listrik. Sedangkan pengukuran kuat medan listrik pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.
Kuat Medan Magnet SUTET 500 KV
Pengukuran kuat medan magnet dilakukan di lapangan terbuka tanpa adanya pengaruh keberadaan pohon-pohonan, rumah serta obyek-obyek lain. Pengukuran kuat medan untuk Ciledug mencapai angka maksimum 0,0021 mili Tesla dititik 0 meter (sejajar tower), Cirata mencapai angka maksimum 0,036 mili Tesla pada titik sejarak 0 m, Ungaran mencapai angka maksimum 0,00180 mili Tesla pada titik sejarak 0 m, sedang Gresik mencapai angka maksimum 0,0021 mili Tesla pada titik sejarak 0 m. Menurut IRPA dan WHO, batasan pajanan kuat medan magnet yang diduga dapat menimbulkan efek biologis untuk umum adalah 0,5 mili Tesla, sedang seperti diuraikan diatas kuat medan magnet di bawah SUTET 500 kV dilapangan terbuka mencapai harga maksimum 0,036 mili Tesla (di Cirata) pada titik 0 m sejajar tower. Jadi masih sangat jauh dibawah ambang batas yang ditetapkan. Pengukuran kuat medan magnet di tiga lokasi dilakukan pada posisi listrik nyala, diperoleh hasil sebagai berikut : di desa Marga Hurip, Kec. Banjaran, Kab. Bandung diperoleh angka maksimum 0.0255 mili Tesla; di desa Genuk RT. 01 Ungaran diperoleh angka maksimum 0.0124 mili Tesla; dan di perumahan Bhakti Pertiwi Gresik diperoleh angka maksimum 0.0175 mili Tesla. Pengukuran kuat medan magnet di dalam rumah dengan posisi listrik nyala memperlihatkan harga yang kecil. Hal ini, sama seperti pada kasus pengukuran medan listrik, disebabkan pula oleh adanya redaman rumah terhadap pajanan medan magnet. Demikian juga pengukuran kuat medan magnet pada posisi listrik tidak menyala, diperoleh hasil sedikit lebih rendah dibanding oleh kuat medan listrik pada posisi nyala. Hasil pengukuran ini jauh dibawah batas pajanan yang diperbolehkan.
Pedoman Teknis Pengurangan Dampak Medan Listrik dan Medan Magnet
Dari penelitian yang sudah dilakukan ditemukan kuat medan listrik di halaman/luar rumah lebih tinggi dibandingkan dengan di dalam rumah, sehingga dalam rangka peningkatan kondisi lingkungan akibat adanya SUTET perlu diperhatikan hal-hal sebagai berikut : mengusahakan agar rumahnya berlangit-langit, menanam popohonan sebanyak mungkin disekitar rumah pada lahan yang kosong, bagian atap rumah terbuat dari atap logam, seharusnya ditanahkan (digroundkan), penduduk disarankan tidak berada diluar rumah terutama pada malam hari, karena pada saat itu arus yang mengalir pada kawat penghantar SUTET lebih tinggi dari pada siang hari.
Pengamanan terhadap arus peluahan elektrostatis perlu dilakukan untuk menghindari adanya pengutupan muatan yang akan terjadi pada benda terbuat dari bahan logam. Caranya yaitu dengan mentanahkan agar terjadi penetralan kembali semua benda terbuat dari bahan logam dengan ukuran cukup besar (contohnya kawat jemuran, kabal interkom, mobil dan sepeda motor), yang terletak dibawah SUTET. Hal ini dikarenakan untuk menghindari adanya pengutupan muatan yang akan terjadi pada objek tersebut, dengan mentanahkan maka akan terjadi penetralan kembali. Akibat adanya arus peluahan ini pengamanan yang harus dilakukan oleh penduduk adalah: disarankan tidak membuat jemuran yang atasnya bebas sama sekali dari pepohonan; disarankan membuat jemuran bukan berasal dari kawat dan tiang besi, (contoh : kayu, bambu, tali plastik) dan kalau terpaksa membuat jemuran yang menggunakan bahan konduktor maka harus di tanahkan; saluran interkom harus jauh dari SUTET; bila atap bukan dari bahan logam (genting, asbes, sirap) maka usahakan atap tersebut tidak terdapat bahan logam (misalnya antena TV, talang seng); jangan memasang antena TV atau radio (ORARI)di atap rumah; usahakan kendaraan bermotor (mobil, sepeda motor dll) ditanahkan untuk menghilangkan medan elektrostatis akibat induksi SUTET; usahakan tidak terdapat bahan-bahan yang bersifat konduktor berada di teras rumah yang bertingkat di bawah SUTET; Sering mungkin melakukan pengukuran tegangan dengan testpen pada objek yang dicurigai bertegangan.
Pengamanan Terhadap Induksi Tegangan Lebih Transien Pada Peralatan Listrik dapat dilaksanakan dengan pemasangan titik nol yang ditanahkan. Tegangan induksi pada peralatan di bawah SUTET aman bagi manusia.
Pengamanan Terhadap Tegangan Langkah dan Tegangan Sentuh disarankan penduduk agar masyarakat tidak masuk didalam daerah sekitar pentanahan kaki menara yang telah diberi pagar oleh PLN.
Pengamanan Terhadap Bahaya Putusnya Kawat Saluran Transisi dilakukan agar pemukiman yang dilintasi SUTET perlu ditanami pepohonan, tetapi perlu di pantau ketinggiannya dan batas-batas ruang bebas, yaitu puncak pohon berjarak minimum 15 M dari kabel SUTET terbawah. Bahaya putusnya kawat SUTET belum pernah dijumpai, yang dijumpai adalah pecahnya isolator, oleh sebab itu digunakan isolator ganda dan dengan tanaman pohon dibawah SUTET yang dipantau ketinggiannya maka bahaya seandainya kawat SUTET putus dapat dieleminir.
Pengamanan terhadap loncatan listrik keinstalasi diatas atap bangunan diadasarkan pada Peraturan Menteri Pertambangan dan Energi No. 01.P/47/MPE/1992, yaitu agar jarak minimum titik tertinggi bangunan (pohon) terhadap titik terendah kawat penghantar SUTET 500 kV harus memenuhi ketentuan sbb : Jarak minimum titik tertinggi bangunan tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum titik tertinggi jembatan besi titik terendah kawat penghantar SUTET 500 kV adalah 8,5 m; Jarak minimum jalan kereta api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum lapangan terbuka terhadap titik terendah kawat penghantar SUTET 500 kV adalah 11 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum titik tertinggi bangunan tidak tahan api terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m; Jarak minimum jalan raya terhadap titik terendah kawat penghantar SUTET 500 kV adalah 15 m. Ruang bebas adalah ruang sekeliling penghantar yang dibentuk oleh jarak bebas minimum sepanjang SUTT atau SUTET yang didalam ruang itu harus dibebaskan dari benda-benda dan kegiatan lainnya. Ruang bebas ditetapkan berdeda-beda dalam luas dan bentuk. Sementara ruang aman adalah ruang yang berada di luar ruang bebas. Lahan atau tanahnya yang masih dapat dimanfaatkan. Dalam ruang aman pengaruh kuat medan listrik dan kuat medan magnet sudah dipertimbangkan dengan mengacu kepada peraturan yang berlaku. Ruang bebas dan ruang aman dapat diatur besarnya sesuai kebutuhan pada saat mempersiapkan rancangbangun. Ruang aman dapat diperluas dengan cara meninggikan menara dan atau mempendek jarak antara menara, sehingga bila ada pemukiman yang akan dilintasi SUTT / SUTET yang akan dibangun berada di dalam ruang yang aman.
(Sumber Laporan Evaluasi Teknis dan Sosialisasi pada Masyarakat tentang Dampak Medan Listrik dan Medan Magnet di Bawah SUTT/SUTET, Proyek Penelitian Teknologi Energi dan Ketenagalistrikan, Ditjen Listrik dan Pengembngan Energi)
Oleh Ir. Nanan Tribuana adalah staf Ditjen Listrik dan Pengembngan Energi, Jakarta
Subscribe to:
Posts (Atom)