PT Perusahaan Listrik Negara bekerja sama dengan Tenaga Nasional Berhad, perusahaan tenaga listrik milik pemerintah Malaysia, membangun jaringan interkoneksi Sumatera-Malaysia sepanjang 100-200 kilometer.
Direktur Perencanaan dan Teknologi PLN Bambang Praptono mengatakan, pembangunan interkoneksi tersebut untuk pertukaran listrik dengan cara memindahkan aliran listrik kedua negara pada saat beban puncak. Tukar menukar pasokan listrik bisa sebesar 600 Megawatt pada 2015 mendatang.
"Prinsipnya bukan Indonesia mengirim listrik, tapi kerja sama pertukaran listrik waktu beban puncak, Malaysia pada siang hari diberi 300 MW, dan malam hari Malaysia mengembalikan 300 MW," kata Bambang di Kantor PLN Pusat, Jalan Trunojoyo, Jakarta, Selasa 27 Oktober 2009.
Menurut dia, dengan adanya kerja sama ini, PLN tidak perlu lagi mengoperasikan unit-unit pembangkit yang menggunakan bahan bakar minyak, sehingga dapat mengurangi biaya pokok penyediaan dan bisa mengamankan pasokan listrik.
Bambang menjelaskan, titik serah pasokan dimulai dari Sumatera. Sedangkan untuk jarak kabel interkoneksi akan melalui jalur laut dan darat. "Rutenya masih kami bicarakan," ujarnya.
Untuk pendanaan pembangunan jaringan transmisi ini, diperkirakan menelan investasi sekitar US$ 300 juta. "Saat ini sudah ada beberapa pihak yang menawarkan pinjaman, di antaranya Bank Pembangunan Asia (ADB), Bank Dunia, serta Japan International Corporation Agency."
Bambang menargetkan, pada 2012 pembangunan jaringan transmisi ini sudah harus dibangun, sehingga target pertukaran listrik pada 2015 bisa direalisasikan. Saat ini PLN juga sudah memiliki kerja sama serupa dengan dibangunnya jaringan transmisi listrik yang menghubungkan Serawak dan Pontianak, yaitu Serawak Electric Company (Sesco).
Proyek ini merupakan bagian dari proyek ASEAN Power Grid (APG) di mana pada masa datang di ASEAN akan ada interkoneksi
listrik ASEAN, di antaranya Semenanjung Malaysia-Singapura, Thailand-Semenanjung Malaysia, dan Serawak-Semenanjung Malaysia.
Selain itu, Sumatera-Semenanjung Malaysia, Batam-Bintan-Singapura-Johor, Serawak-Kalimantan Barat, Filipina-Sabah,
Serawak-Sabah-Brunei, Thailand-Laos, Laos-Kamboja, Thailand-Myanmar, Vietnam-Kamboja, Laos-Vietnam, dan Thailand-Kamboja.
sumber berita: vivanews.com - Selasa, 27 Oktober 2009, 10:54 WIB
UPDATE
(Jakarta, 26 Oktober) Setelah 20 tahun melakukan studi teknis dan studi kelayakan, interkoneksi sistem kelistrikan antara pulau Sumatera dan Semenanjung Malaysia rencana akan terwujud di tahun 2015. Proyek penyambungan sistem kelistrikan itu akan menggunakan kabel bawah laut 250 kV sepanjang kurang lebih 200 kilometer dan dua set kabel bawah laut masing-masing 57 kilometer.
Interkoneksi tersebut akan mampu menyalurkan daya sebesar 600 MW. Kedua pihak, PLN dan Tenaga Nasional Berhad (TNB), perusahaan listrik Malaysia akan mengadakan pertemuan kembali untuk mendiskusikan perumusan kontrak, pendanaan, dan detil pekerjaan.
Untuk pendanaan, Bank Dunia akan dilibatkan dalam proyek yang sangat penting ini. Penandatanganan Heads of Agreement tentang hal tersebut dilakukan Jum’at (23/10) lalu antara Direktur Utama PLN Fahmi Mochtar dan President and Chief Executive Officer TNB Datuk Seri Che Khalib Mohd Noh. Proyek ini akan menjadi koneksi listrik antar dua negara yang kedua setelah terjalinnya kesepakatan interkoneksi pertama yang menghubungkan Bakun dan Kalimantan Barat.
Interkoneksi ini akan memungkinkan kedua negara, Indonesia dan Malaysia, untuk saling membantu dan mendukung pemenuhan kebutuhan listrik satu sama lain pada saat beban puncak, dimana beban puncak di semenanjung Malysia terjadi pada siang hari dan beban puncak di Sumatera terjadi pada malam hari.
sumber: PLN.co.id
Ekonomi | Kebidanan | makalah | Literature | Otomotife | News | Midwife | Mobile | Phone Cell
Monday, October 26, 2009
Sistem-Sistem Pendukung pada GenSet
Dalam pengoperasiannya, suatu instalasi GenSet memerlukan sistem pendukung agar dapat bekerja dengan baik dan tanpa mengalami gangguan. Secara umum sistem-sistem pendukung tersebut dibagi menjadi 3 bagian, yaitu:
1. Sistem Pelumasan
2. Sistem Bahan Bakar
3. Sistem Pendinginan
1. Sistem Pelumasan
Untuk mengurangi getaran antara bagian-bagian yang bergerak dan untuk membuang panas, maka semua bearing dan dinding dalam dari tabung-tabung silinder diberi minyak pelumas.
Cara Kerja Sistem Pelumasan
Minyak tersebut dihisap dari bak minyak 1 oleh pompa minyak 2 dan disalurkan dengan tekanan ke saluran-saluran pembagi setelah terlebih dahulu melewati sistem pendingin dan saringan minyak pelumas. Dari saluran-saluran pembagi ini, minyak pelumas tersebut disalurkan sampai pada tempat kedudukan bearing-bearing dari poros engkol, poros jungkat dan ayunan-ayunan. Saluran yang lain memberi minyak pelumas kepada sprayer atau nozzle penyemperot yang menyemprotkannya ke dinding dalam dari piston sebagai pendingin. Minyak pelumas yang memercik dari bearing utama dan bearing ujung besar (bearing putar) melumasi dinding dalam dari tabung- tabung silinder.
Minyak pelumas yang mengalir dari tempat-tempat pelumasan kemudian kembali kedalam bak minyak lagi melalui saluran kembali dan kemudian dihisap oleh pompa minyak untuk disalurkan kembali dan begitu seterusnya.
Gambar 1. Sistem Pelumasan
1. Bak minyak
2. Pompa pelumas
3. Pompa minyak pendingin
4. Pipa hisap
5. Pendingin minyak pelumas
6. Bypass-untuk pendingin
7. Saringan minyak pelumas
8. Katup by-pass untuk saringan
9. Pipa pembagi
10. Bearing poros engkol (lager duduk)
11. Bearing ujung besar (lager putar)
12. Bearing poros-bubungan
13. Sprayer atau nozzle penyemprot untuk pendinginan piston
14. Piston
15. Pengetuk tangkai
16. Tangkai penolak
17. Ayunan
18. Pemadat udara (sistem Turbine gas)
19. Pipa ke pipa penyemprot
20. Saluran pengembalian
2. Sistem Bahan Bakar
Mesin dapat berputar karena sekali tiap dua putaran disemprotkan bahan bakar ke dalam ruang silinder, sesaat sebelum, piston mencapai titik mati atasnya (T.M.A.). Untuk itu oleh pompa penyemperot bahan bakar 1 ditekankan sejumlah bahan bakar yang sebelumnya telah dibersihkan oleh saringan-bahan bakar 5, pada alat pemasok bahan bakar atau injektor 7 yang terpasang dikepala silinder. Karena melewati injektor tersebut maka bahan bakar masuk kedalam ruang silinder dalam keadaan terbagi dengan bagian-bagian yang sangat kecil (biasa juga disebut dengan proses pengkabutan)
Didalam udara yang panas akibat pemadatan itu bahan bakar yang sudah dalam keadaan bintik-bintik halus (kabut) tersebut segera terbakar. Pompa bahan bakar 2 mengantar bahan bakar dari tangki harian 8 ke pompa penyemprot bahan bakar. Bahan bakar yang kelebihan yang keluar dari injektor dan pompa penyemperot dikembalikan kepada tanki harian melalui pipa pengembalian bahan bakar.
Gambar 2. Sistem bahan bakar
1. Pompa penyemperot bahan bakar
2. Pompa bahan bakar
3. Pompa tangan untuk bahan bakar
4. Saringan bahar/bakar penyarinnan pendahuluan
5. Saringan bahan bakar/penyaringan akhir
6. Penutup bahan bakar otomatis
7. Injektor
8. Tanki
9. Pipa pengembalian bahan bakar
10. Pipa bahan bakar tekanan tinggi
11. Pipa peluap.
3. Sistem Pendinginan
Hanya sebagian dari energi yang terkandung dalam bahan bakar yang diberikan pada mesin dapat diubah menjadi tenaga mekanik sedang sebagian lagi tersisa sebagai panas. Panas yang tersisa tersebut akan diserap oleh bahan pendingin yang ada pada dinding-dinding bagian tabung silinder yang membentuk ruang pembakaran, demikian pula bagian-bagian dari kepala silinder didinginkan dengan air. Sedangkan untuk piston didinginkan dengan minyak pelumas dan panas yang diresap oleh minyak pendingin itu kemudian disalurkan melewati alat pendingin minyak, dimana panas tersebut diresap oleh bahan pendingin.
Pada mesin diesel dengan pemadat udara tekanan tinggi, udara yang telah dipadatken oleh turbocharger tersebut kemudian didinginkan oleh air didalam pendingin udara (intercooler), Pendinginan sirkulasi dengan radiator bersirip dan kipas (pendinginan dengan sirkuit)
Cara Kerja Sistem Pendingin
Pompa-pompa air 1 dan 2 memompa air kebagian-bagian mesin yarg memerlukan pendinginan dan kealat pendingin udara (intercooler) 3. Dari situ air pendingin kemudian melewati radiator dan kembali kepada pompa-pompa 1 dan 2. Didalam radiator terjadi pemindahan panas dari air pendingin ke udara yang melewati celah-celah radiator oleh dorongan kipas angin. Pada saat Genset baru dijalankan dan suhu dari bahan pendingin masih terlalu rendah, maka oleh thermostat 5, air pendingin tersebut dipaksa melalui jalan potong atau bypass 6 kembali kepompa. Dengan demikian maka air akan lebih cepat mencapai suhu yang diperlukan untuk operasi. Bila suhu tersebut telah tercapai maka air pendingin akan melalui jalan sirkulasi yang sebenarnya secara otomatis.
Gambar 3. Sistem pendinginan (sistem sirkulasi dengan 2 Sirkuit)
1. Pompa air untuk pendingin mesin
2. Pompa air untuk pendinginan intercooler
3. Inter cooler (Alat pendingin udara yang telah dipanaskan)
4. Radiator
5. Thermostat
6. Bypass (jalan potong)
7. Saluran pengembalian lewat radiator
8. Kipas.
Susunan Konstruksi Pada Generator
Gambar 4. Sistem konstruksi Generator
1. Stator
2. Rotor
3. Exciter Rotor
4. Exciter Stator
5. N.D.E. Bracket
6. Cover N.D.E
7. Bearing ‘O’ Ring N.D.E
8. Bearing N.D.E
9. Bearing Circlip N.D.E
10. D.E.Bracket?Engine Adaptor
11. D.E.Screen
12. Coupling Disc
13. Coupling Bolt
14. Foot
15. Frame Cover Bottom
16. Frame Cover Top
17. Air Inlert Cover
18. Terminal Box Lid
19. Endpanel D.E
20. Endpanel N.D.E
21. AVR
22. Side Panel
23. AVR Mounting Bracket
24. Main Rectifier Assembly – Forward
25. Main Rectifier Assembly – Reverse
26. Varistor
27. Dioda Forward Polarity
28. Dioda Reverse Polarity
29. Lifting Lug D.E
30. Lifting Lug N.D.E
31. Frame to Endbracket Adaptor Ring
32. Main Terminal Panel
33. Terminal Link
34. Edging Strip
35. Fan
36. Foot Mounting Spacer
37. Cap Screw
38. AVR Access Cover
39. AVR Anti Vibration Mounting Assembly
40. Auxiliary Terminal Assembly
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
1. Sistem Pelumasan
2. Sistem Bahan Bakar
3. Sistem Pendinginan
1. Sistem Pelumasan
Untuk mengurangi getaran antara bagian-bagian yang bergerak dan untuk membuang panas, maka semua bearing dan dinding dalam dari tabung-tabung silinder diberi minyak pelumas.
Cara Kerja Sistem Pelumasan
Minyak tersebut dihisap dari bak minyak 1 oleh pompa minyak 2 dan disalurkan dengan tekanan ke saluran-saluran pembagi setelah terlebih dahulu melewati sistem pendingin dan saringan minyak pelumas. Dari saluran-saluran pembagi ini, minyak pelumas tersebut disalurkan sampai pada tempat kedudukan bearing-bearing dari poros engkol, poros jungkat dan ayunan-ayunan. Saluran yang lain memberi minyak pelumas kepada sprayer atau nozzle penyemperot yang menyemprotkannya ke dinding dalam dari piston sebagai pendingin. Minyak pelumas yang memercik dari bearing utama dan bearing ujung besar (bearing putar) melumasi dinding dalam dari tabung- tabung silinder.
Minyak pelumas yang mengalir dari tempat-tempat pelumasan kemudian kembali kedalam bak minyak lagi melalui saluran kembali dan kemudian dihisap oleh pompa minyak untuk disalurkan kembali dan begitu seterusnya.
Gambar 1. Sistem Pelumasan
1. Bak minyak
2. Pompa pelumas
3. Pompa minyak pendingin
4. Pipa hisap
5. Pendingin minyak pelumas
6. Bypass-untuk pendingin
7. Saringan minyak pelumas
8. Katup by-pass untuk saringan
9. Pipa pembagi
10. Bearing poros engkol (lager duduk)
11. Bearing ujung besar (lager putar)
12. Bearing poros-bubungan
13. Sprayer atau nozzle penyemprot untuk pendinginan piston
14. Piston
15. Pengetuk tangkai
16. Tangkai penolak
17. Ayunan
18. Pemadat udara (sistem Turbine gas)
19. Pipa ke pipa penyemprot
20. Saluran pengembalian
2. Sistem Bahan Bakar
Mesin dapat berputar karena sekali tiap dua putaran disemprotkan bahan bakar ke dalam ruang silinder, sesaat sebelum, piston mencapai titik mati atasnya (T.M.A.). Untuk itu oleh pompa penyemperot bahan bakar 1 ditekankan sejumlah bahan bakar yang sebelumnya telah dibersihkan oleh saringan-bahan bakar 5, pada alat pemasok bahan bakar atau injektor 7 yang terpasang dikepala silinder. Karena melewati injektor tersebut maka bahan bakar masuk kedalam ruang silinder dalam keadaan terbagi dengan bagian-bagian yang sangat kecil (biasa juga disebut dengan proses pengkabutan)
Didalam udara yang panas akibat pemadatan itu bahan bakar yang sudah dalam keadaan bintik-bintik halus (kabut) tersebut segera terbakar. Pompa bahan bakar 2 mengantar bahan bakar dari tangki harian 8 ke pompa penyemprot bahan bakar. Bahan bakar yang kelebihan yang keluar dari injektor dan pompa penyemperot dikembalikan kepada tanki harian melalui pipa pengembalian bahan bakar.
Gambar 2. Sistem bahan bakar
1. Pompa penyemperot bahan bakar
2. Pompa bahan bakar
3. Pompa tangan untuk bahan bakar
4. Saringan bahar/bakar penyarinnan pendahuluan
5. Saringan bahan bakar/penyaringan akhir
6. Penutup bahan bakar otomatis
7. Injektor
8. Tanki
9. Pipa pengembalian bahan bakar
10. Pipa bahan bakar tekanan tinggi
11. Pipa peluap.
3. Sistem Pendinginan
Hanya sebagian dari energi yang terkandung dalam bahan bakar yang diberikan pada mesin dapat diubah menjadi tenaga mekanik sedang sebagian lagi tersisa sebagai panas. Panas yang tersisa tersebut akan diserap oleh bahan pendingin yang ada pada dinding-dinding bagian tabung silinder yang membentuk ruang pembakaran, demikian pula bagian-bagian dari kepala silinder didinginkan dengan air. Sedangkan untuk piston didinginkan dengan minyak pelumas dan panas yang diresap oleh minyak pendingin itu kemudian disalurkan melewati alat pendingin minyak, dimana panas tersebut diresap oleh bahan pendingin.
Pada mesin diesel dengan pemadat udara tekanan tinggi, udara yang telah dipadatken oleh turbocharger tersebut kemudian didinginkan oleh air didalam pendingin udara (intercooler), Pendinginan sirkulasi dengan radiator bersirip dan kipas (pendinginan dengan sirkuit)
Cara Kerja Sistem Pendingin
Pompa-pompa air 1 dan 2 memompa air kebagian-bagian mesin yarg memerlukan pendinginan dan kealat pendingin udara (intercooler) 3. Dari situ air pendingin kemudian melewati radiator dan kembali kepada pompa-pompa 1 dan 2. Didalam radiator terjadi pemindahan panas dari air pendingin ke udara yang melewati celah-celah radiator oleh dorongan kipas angin. Pada saat Genset baru dijalankan dan suhu dari bahan pendingin masih terlalu rendah, maka oleh thermostat 5, air pendingin tersebut dipaksa melalui jalan potong atau bypass 6 kembali kepompa. Dengan demikian maka air akan lebih cepat mencapai suhu yang diperlukan untuk operasi. Bila suhu tersebut telah tercapai maka air pendingin akan melalui jalan sirkulasi yang sebenarnya secara otomatis.
Gambar 3. Sistem pendinginan (sistem sirkulasi dengan 2 Sirkuit)
1. Pompa air untuk pendingin mesin
2. Pompa air untuk pendinginan intercooler
3. Inter cooler (Alat pendingin udara yang telah dipanaskan)
4. Radiator
5. Thermostat
6. Bypass (jalan potong)
7. Saluran pengembalian lewat radiator
8. Kipas.
Susunan Konstruksi Pada Generator
Gambar 4. Sistem konstruksi Generator
1. Stator
2. Rotor
3. Exciter Rotor
4. Exciter Stator
5. N.D.E. Bracket
6. Cover N.D.E
7. Bearing ‘O’ Ring N.D.E
8. Bearing N.D.E
9. Bearing Circlip N.D.E
10. D.E.Bracket?Engine Adaptor
11. D.E.Screen
12. Coupling Disc
13. Coupling Bolt
14. Foot
15. Frame Cover Bottom
16. Frame Cover Top
17. Air Inlert Cover
18. Terminal Box Lid
19. Endpanel D.E
20. Endpanel N.D.E
21. AVR
22. Side Panel
23. AVR Mounting Bracket
24. Main Rectifier Assembly – Forward
25. Main Rectifier Assembly – Reverse
26. Varistor
27. Dioda Forward Polarity
28. Dioda Reverse Polarity
29. Lifting Lug D.E
30. Lifting Lug N.D.E
31. Frame to Endbracket Adaptor Ring
32. Main Terminal Panel
33. Terminal Link
34. Edging Strip
35. Fan
36. Foot Mounting Spacer
37. Cap Screw
38. AVR Access Cover
39. AVR Anti Vibration Mounting Assembly
40. Auxiliary Terminal Assembly
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Sunday, October 25, 2009
Generator Set (GENSET)
Ketika terjadi pemadaman catu daya utama (PLN) maka dibutuhkan suplai cadangan listrik dan pada kondisi tersebut Generator-Set diharapkan dapat mensuplai tenaga listrik terutama untuk beban-beban prioritas. Genset dapat digunakan sebagai sistem cadangan listrik atau "off-grid" (sumber daya yang tergantung atas kebutuhan pemakai). Genset sering digunakan oleh rumah sakit dan industri yang membutuhkan sumber daya yang mantap dan andal (tingkat keandalan pasokan yang tinggi), dan juga untuk area pedesaan yang tidak ada akses untuk secara komersial dipasok listrik melalui jaringan distribusi PLN yang ada.
Suatu mesin diesel generator set terdiri dari:
1. Prime mover atau pengerak mula, dalam hal ini mesin diesel (dalam bahasa inggris disebut diesel engine)
2. Generator
3. AMF (Automatic Main Failure) dan ATS (Automatic Transfer Switch)
4. Baterai dan Battery Charger
5. Panel ACOS (Automatic Change Over Switch)
6. Pengaman untuk Peralatan
7. Perlengkapan Instalasi Tenaga
Mesin Diesel
Mesin diesel termasuk mesin dengan pembakaran dalam atau disebut dengan motor bakar, ditinjau dari cara memperoleh energi termalnya (energi panas). Untuk membangkitkan listrik, sebuah mesin diesel dihubungkan dengan generator dalam satu poros (poros dari mesin diesel dikopel dengan poros generator).
Keuntungan pemakaian mesin diesel sebagai penggerak mula:
* Desain dan instalasi sederhana
* Auxilary equipment (peralatan bantu) sederhana
* Waktu pembebanan relatif singkat
Kerugian pemakaian mesin diesel sebagai Penggerak mula:
*Berat mesin sangat berat karena harus dapat menahan getaran serta kompresi yang tinggi.
* Starting awal berat, karena kompresinya tinggi yaitu sekitar 200 bar.
* Semakin besar daya maka mesin diesel tersebut dimensinya makin besar pula, hal tersebut menyebabkan kesulitan jika daya mesinnya sangat besar.
* Konsumsi bahan bakar menggunakan bahan bakar minyak yang relatif lebih mahal dibandingkan dengan pembangkit listrik yang menggunakan bahan bakar jenis lainnya, seperti gas dan batubara.
Cara Kerja Mesin Diesel
Prime mover atau penggerak mula merupakan peralatan yang berfungsi menghasilkan energi mekanis yang diperlukan untuk memutar rotor generator. Pada mesin diesel/diesel engine terjadi penyalaan sendiri, karena proses kerjanya berdasarkan udara murni yang dimampatkan di dalam silinder pada tekanan yang tinggi (± 30 atm), sehingga temperatur di dalam silinder naik. Dan pada saat itu bahan bakar disemprotkan dalam silinder yang bersuhu dan bertekanan tinggi melebihi titik nyala bahan bakar sehingga bahan bakar yang diinjeksikan akan terbakar secara otomatis. Penambahan panas atau energi senantiasa dilakukan pada tekanan yang konstan.
Tekanan gas hasil pembakaran bahan bakar dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.
Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengan
siklus otto).
Perbedaan antara motor diesel dan motor bensin yang nyata adalah terletak pada proses pembakaran bahan bakar, pada motor bensin pembakaran bahan bakar terjadi karena adanya loncatan api listrik yang dihasilkan oleh dua elektroda busi (spark plug), sedangkan pada motor diesel pembakaran terjadi karena kenaikan temperatur campuran udara dan bahan bakar akibat kompresi torak hingga mencapai temperatur nyala. Karena prinsip penyalaan bahan bakarnya akibat tekanan maka motor diesel juga disebut compression ignition engine sedangkan motor bensin disebut spark ignition engine.
Pada mesin diesel, piston melakukan 2 langkah pendek menuju kepala silinder pada setiap langkah daya.
1. Langkah ke atas yang pertama merupakan langkah pemasukan dan penghisapan, di sini udara dan bahan bakar masuk sedangkan poros engkol berputar ke bawah.
2. Langkah kedua merupakan langkah kompresi, poros engkol terus berputar menyebabkan torak naik dan menekan bahan bakar sehingga terjadi pembakaran. Kedua proses ini (1 dan 2) termasuk proses pembakaran.
3. Langkah ketiga merupakan langkah ekspansi dan kerja, di sini kedua katup yaitu katup isap dan buang tertutup sedangkan poros engkol terus berputar dan menarik kembali torak ke bawah.
4. Langkah keempat merupakan langkah pembuangan, disini katup buang terbuka dan menyebabkan gas akibat sisa pembakaran terbuang keluar. Gas dapat keluar karena pada proses keempat ini torak kembali bergerak naik keatas dan menyebabkan gas dapat keluar. Kedua proses terakhir ini (3 dan 4) termasuk proses pembuangan.
5. Setelah keempat proses tersebut, maka proses berikutnya akan mengulang kembali proses yang pertama, dimana udara dan bahan bakar masuk kembali.
Berdasarkan kecepatan proses diatas maka mesin diesel dapat digolongkan menjadi 3 bagian, yaitu:
1. Diesel kecepatan rendah (< 400 rpm)
2. Diesel kecepatan menengah (400 - 1000 rpm)
3. Diesel kecepatan tinggi ( >1000 rpm)
Sistem starting atau proses untuk menghidupkan/menjalankan mesin diesel dibagi menjadi 3 macam sistem starting yaitu:
1. Sistem Start Manual
Sistem start ini dipakai untuk mesin diesel dengan daya mesin yang relatif kecil yaitu < 30 PK. Cara untuk menghidupkan mesin diesel pada sistem ini adalah dengan menggunakan penggerak engkol start pada poros engkol atau poros hubung yang akan digerakkan oleh tenaga manusia. Jadi sistem start ini sangat bergantung pada faktor manusia sebagai operatornya.
2. Sistem Start Elektrik
Sistem ini dipakai oleh mesin diesel yang memiliki daya sedang yaitu < 500 PK. Sistem ini menggunakan motor DC dengan suplai listrik dari baterai/accu 12 atau 24 volt untuk menstart diesel. Saat start, motor DC mendapat suplai listrik dari baterai atau accu dan menghasilkan torsi yang dipakai untuk menggerakkan diesel sampai mencapai putaran tertentu. Baterai atau accu yang dipakai harus dapat dipakai untuk menstart sebanyak 6 kali tanpa diisi kembali, karena arus start yang dibutuhkan motor DC cukup besar maka dipakai dinamo yang berfungsi sebagai generator DC. Pengisian ulang baterai atau accu digunakan alat bantu berupa battery charger dan pengaman tegangan. Pada saat diesel tidak bekerja maka battery charger mendapat suplai listrik dari PLN, sedangkan pada saat diesel bekerja maka suplai dari battery charger didapat dari generator. Fungsi dari pengaman tegangan adalah untuk memonitor tegangan baterai atau accu. Sehingga apabila tegangan dari baterai atau accu sudah mencapai 12/24 volt, yang merupakan tegangan standarnya, maka hubungan antara battery charger dengan baterai atau accu akan diputus oleh pengaman tegangan.
3. Sistem Start Kompresi
Sistem start ini dipakai oleh diesel yang memiliki daya besar yaitu > 500 PK. Sistem ini memakai motor dengan udara bertekanan tinggi untuk start dari mesin diesel. Cara kerjanya yaitu dengan menyimpan udara ke dalam suatu botol udara. Kemudian udara tersebut dikompresi sehingga menjadi udara panas dan bahan bakar solar dimasukkan ke dalam Fuel Injection Pump serta disemprotkan lewat nozzle dengan tekanan tinggi. Akibatnya akan terjadi pengkabutan dan pembakaran di ruang bakar. Pada saat tekanan di dalam tabung turun sampai batas minimum yang ditentukan, maka kompressor akan secara otomatis menaikkan tekanan udara di dalam tabung hingga tekanan dalam tabung mencukupi dan siap dipakai untuk melakukan starting mesin diesel.
AMF (Automatic Main Failure) dan ATS (Automatic Transfer Switch)
AMF merupakan alat yang berfungsi menurunkan downtime dan meningkatkan keandalan sistem catu daya listrik. AMF dapat mengendalikan transfer Circuit Breaker (CB) atau alat sejenis, dari catu daya utama (PLN) ke catu daya cadangan (genset) dan sebaliknya. Dan ATS merupakan pelengkap dari AMF dan bekerja secara bersama-sama.
Cara Kerja AMF dan ATS
Automatic Main Failure (AMF) dapat mengendalikan transfer suatu alat dari suplai utama ke suplai cadangan atau dari suplai cadangan ke suplai utama.AMF akan beroperasi saat catu daya utama (PLN) padam dengan mengatur catu daya cadangan (genset). AMF dapat mengatur genset beroperasi jika suplai utama dari PLN mati dan memutuskan genset jika suplai utama dari PLN hidup lagi.
Baterai (baterry dan accu)
Battery merupakan suatu proses pengubahan energi kimia menjadi energi listrik yang berupa sel listrik. Pada dasarnya sel listrik terdiri dari dua buah logam/ konduktor yang berbeda dicelupkan ke dalam larutan maka akan bereaksi secara kimia dan menghasilkan gaya gerak listrik antara kedua konduktor tersebut. Proses pengisian battery dilakukan dengan cara mengalirkan arus melalui sel-sel dengan arah yang berlawanan dengan aliran arus dalam proses pengosongan sehingga sel akan dikembalikan dalam keadaan semula. Battery yang digunakan pada sistem otomatis GenSet berfungsi sebagai sumber arus DC pada starting diesel.
Battery Charger
Alat ini berfungsi untuk proses pengisian battery dengan mengubah tegangan PLN 220V atau dari generator itu sendiri menjadi 12/24 V menggunakan rangkaian penyearah. Battery Charger ini biasanya dilengkapi dengan pengaman hubung singkat (Short Circuit) berupa sekering/ fuse.
Panel ACOS
ACOS (Automatic Change Over Switch) merupakan panel pengendalian generator dan terdapat beberapa tombol yang masing-masing mempunyai fungsi yang berbeda.
Tombol pengontrol operasi Gen Set automatic, antara lain yaitu :
Off, Automatic, Trial Service, Manual Service, Manual Starting, Manual Stoping, Signal Test, Horn Off, Release, Start, Start Fault, Engine Running, Supervision On, Low Oil Pressure, Temperature To High, Generator Over Load.
Sistem Pengaman Genset
Sistem pengaman harus dapat bekerja cepat dan tepat dalam mengisolir gangguan agar tidak terjadi kerusakan fatal. Proteksi pada mesin generator ada dua macam yaitu :
1) Pengaman alarm
Bertujuan memberitahukan kepada operator bahwa ada sesuatu yang tidak normal dalam operasi mesin generator dan agar operator segera bertindak.
2) Pengaman trip
Berfungsi untuk menghindarkan mesin generator dari kemungkinan kerusakan karena ada sistem yang berfungsi tidak normal maka mesin akan stop secara otomatis.
Jenis pengaman trip antara lain :
1) Putaran lebih (over speed)
2) Temperatur air pendingin tinggi
3) Tekanan minyak pelumas rendah
4) Emergency stop
5) Reverse power
Pentanahan (grounding)
a) Pentanahan sistem, pentanahan untuk suatu titik pada penghantar arus dari sistem. Pada umumnya titik tersebut adalah titik netral dari suatu mesin, transformator, atau untuk rangkaian listrik tertentu.
b) Pentanahan peralatan sistem, pentanahan untuk suatu bagian yang tidak membawa arus dari sistem, misalnya : Semua logam seperti saluran tempat kabel, kerangka mesin, batang pemegang sakelar, penutup kotak sakelar.
Relay pengaman pada genset:
a) Relay arus lebih
Thermal Over Load Relay (TOLR) digunakan untuk melindungi motor dan perlengkapan kendali motor dari kerusakan akibat beban lebih atau terjadinya hubungan singkat antar hantaran yang menuju jaring atau antar fasa.
b) Relay tegangan lebih
bekerja bila tegangan yang dihasilkan generator melebihi batas nominalnya.
c) Relay diferensial
bekerja atas dasar perbandingan tegangan atau perbandingan arus, yaitu besarnya arus sebelum lilitan stator dengan arus yang mengalir pada hantaran yang menuju jaring-jaring.
d) Relay daya balik
berfungsi untuk mendeteksi aliran daya aktif yang masuk ke arah generator.
Sekering
berungsi untuk mengamankan peralatan atau instalasi listrik dari gangguan hubung singkat
Jika suatu sekering dilewati arus di atas arus kerjanya, maka pada waktu tertentu sekering tersebut akan lebur (putus). Besarnya arus yang dapat meleburkan suatu sekering dalam waktu 4 jam dibagi arus kerja disebut faktor peleburan berkisar 1 hingga 1,5.
*) Gambar langkah kerja piston pada mesin diesel milik gudangilmu.org
*) Gambar ATS dan AMF milik caturmukti.com
*) Gambar panel ACOS milik tredintechnologies.com
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Suatu mesin diesel generator set terdiri dari:
1. Prime mover atau pengerak mula, dalam hal ini mesin diesel (dalam bahasa inggris disebut diesel engine)
2. Generator
3. AMF (Automatic Main Failure) dan ATS (Automatic Transfer Switch)
4. Baterai dan Battery Charger
5. Panel ACOS (Automatic Change Over Switch)
6. Pengaman untuk Peralatan
7. Perlengkapan Instalasi Tenaga
Mesin Diesel
Mesin diesel termasuk mesin dengan pembakaran dalam atau disebut dengan motor bakar, ditinjau dari cara memperoleh energi termalnya (energi panas). Untuk membangkitkan listrik, sebuah mesin diesel dihubungkan dengan generator dalam satu poros (poros dari mesin diesel dikopel dengan poros generator).
Keuntungan pemakaian mesin diesel sebagai penggerak mula:
* Desain dan instalasi sederhana
* Auxilary equipment (peralatan bantu) sederhana
* Waktu pembebanan relatif singkat
Kerugian pemakaian mesin diesel sebagai Penggerak mula:
*Berat mesin sangat berat karena harus dapat menahan getaran serta kompresi yang tinggi.
* Starting awal berat, karena kompresinya tinggi yaitu sekitar 200 bar.
* Semakin besar daya maka mesin diesel tersebut dimensinya makin besar pula, hal tersebut menyebabkan kesulitan jika daya mesinnya sangat besar.
* Konsumsi bahan bakar menggunakan bahan bakar minyak yang relatif lebih mahal dibandingkan dengan pembangkit listrik yang menggunakan bahan bakar jenis lainnya, seperti gas dan batubara.
Cara Kerja Mesin Diesel
Prime mover atau penggerak mula merupakan peralatan yang berfungsi menghasilkan energi mekanis yang diperlukan untuk memutar rotor generator. Pada mesin diesel/diesel engine terjadi penyalaan sendiri, karena proses kerjanya berdasarkan udara murni yang dimampatkan di dalam silinder pada tekanan yang tinggi (± 30 atm), sehingga temperatur di dalam silinder naik. Dan pada saat itu bahan bakar disemprotkan dalam silinder yang bersuhu dan bertekanan tinggi melebihi titik nyala bahan bakar sehingga bahan bakar yang diinjeksikan akan terbakar secara otomatis. Penambahan panas atau energi senantiasa dilakukan pada tekanan yang konstan.
Tekanan gas hasil pembakaran bahan bakar dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.
Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengan
siklus otto).
Perbedaan antara motor diesel dan motor bensin yang nyata adalah terletak pada proses pembakaran bahan bakar, pada motor bensin pembakaran bahan bakar terjadi karena adanya loncatan api listrik yang dihasilkan oleh dua elektroda busi (spark plug), sedangkan pada motor diesel pembakaran terjadi karena kenaikan temperatur campuran udara dan bahan bakar akibat kompresi torak hingga mencapai temperatur nyala. Karena prinsip penyalaan bahan bakarnya akibat tekanan maka motor diesel juga disebut compression ignition engine sedangkan motor bensin disebut spark ignition engine.
Pada mesin diesel, piston melakukan 2 langkah pendek menuju kepala silinder pada setiap langkah daya.
1. Langkah ke atas yang pertama merupakan langkah pemasukan dan penghisapan, di sini udara dan bahan bakar masuk sedangkan poros engkol berputar ke bawah.
2. Langkah kedua merupakan langkah kompresi, poros engkol terus berputar menyebabkan torak naik dan menekan bahan bakar sehingga terjadi pembakaran. Kedua proses ini (1 dan 2) termasuk proses pembakaran.
3. Langkah ketiga merupakan langkah ekspansi dan kerja, di sini kedua katup yaitu katup isap dan buang tertutup sedangkan poros engkol terus berputar dan menarik kembali torak ke bawah.
4. Langkah keempat merupakan langkah pembuangan, disini katup buang terbuka dan menyebabkan gas akibat sisa pembakaran terbuang keluar. Gas dapat keluar karena pada proses keempat ini torak kembali bergerak naik keatas dan menyebabkan gas dapat keluar. Kedua proses terakhir ini (3 dan 4) termasuk proses pembuangan.
5. Setelah keempat proses tersebut, maka proses berikutnya akan mengulang kembali proses yang pertama, dimana udara dan bahan bakar masuk kembali.
Berdasarkan kecepatan proses diatas maka mesin diesel dapat digolongkan menjadi 3 bagian, yaitu:
1. Diesel kecepatan rendah (< 400 rpm)
2. Diesel kecepatan menengah (400 - 1000 rpm)
3. Diesel kecepatan tinggi ( >1000 rpm)
Sistem starting atau proses untuk menghidupkan/menjalankan mesin diesel dibagi menjadi 3 macam sistem starting yaitu:
1. Sistem Start Manual
Sistem start ini dipakai untuk mesin diesel dengan daya mesin yang relatif kecil yaitu < 30 PK. Cara untuk menghidupkan mesin diesel pada sistem ini adalah dengan menggunakan penggerak engkol start pada poros engkol atau poros hubung yang akan digerakkan oleh tenaga manusia. Jadi sistem start ini sangat bergantung pada faktor manusia sebagai operatornya.
2. Sistem Start Elektrik
Sistem ini dipakai oleh mesin diesel yang memiliki daya sedang yaitu < 500 PK. Sistem ini menggunakan motor DC dengan suplai listrik dari baterai/accu 12 atau 24 volt untuk menstart diesel. Saat start, motor DC mendapat suplai listrik dari baterai atau accu dan menghasilkan torsi yang dipakai untuk menggerakkan diesel sampai mencapai putaran tertentu. Baterai atau accu yang dipakai harus dapat dipakai untuk menstart sebanyak 6 kali tanpa diisi kembali, karena arus start yang dibutuhkan motor DC cukup besar maka dipakai dinamo yang berfungsi sebagai generator DC. Pengisian ulang baterai atau accu digunakan alat bantu berupa battery charger dan pengaman tegangan. Pada saat diesel tidak bekerja maka battery charger mendapat suplai listrik dari PLN, sedangkan pada saat diesel bekerja maka suplai dari battery charger didapat dari generator. Fungsi dari pengaman tegangan adalah untuk memonitor tegangan baterai atau accu. Sehingga apabila tegangan dari baterai atau accu sudah mencapai 12/24 volt, yang merupakan tegangan standarnya, maka hubungan antara battery charger dengan baterai atau accu akan diputus oleh pengaman tegangan.
3. Sistem Start Kompresi
Sistem start ini dipakai oleh diesel yang memiliki daya besar yaitu > 500 PK. Sistem ini memakai motor dengan udara bertekanan tinggi untuk start dari mesin diesel. Cara kerjanya yaitu dengan menyimpan udara ke dalam suatu botol udara. Kemudian udara tersebut dikompresi sehingga menjadi udara panas dan bahan bakar solar dimasukkan ke dalam Fuel Injection Pump serta disemprotkan lewat nozzle dengan tekanan tinggi. Akibatnya akan terjadi pengkabutan dan pembakaran di ruang bakar. Pada saat tekanan di dalam tabung turun sampai batas minimum yang ditentukan, maka kompressor akan secara otomatis menaikkan tekanan udara di dalam tabung hingga tekanan dalam tabung mencukupi dan siap dipakai untuk melakukan starting mesin diesel.
AMF (Automatic Main Failure) dan ATS (Automatic Transfer Switch)
AMF merupakan alat yang berfungsi menurunkan downtime dan meningkatkan keandalan sistem catu daya listrik. AMF dapat mengendalikan transfer Circuit Breaker (CB) atau alat sejenis, dari catu daya utama (PLN) ke catu daya cadangan (genset) dan sebaliknya. Dan ATS merupakan pelengkap dari AMF dan bekerja secara bersama-sama.
Cara Kerja AMF dan ATS
Automatic Main Failure (AMF) dapat mengendalikan transfer suatu alat dari suplai utama ke suplai cadangan atau dari suplai cadangan ke suplai utama.AMF akan beroperasi saat catu daya utama (PLN) padam dengan mengatur catu daya cadangan (genset). AMF dapat mengatur genset beroperasi jika suplai utama dari PLN mati dan memutuskan genset jika suplai utama dari PLN hidup lagi.
Baterai (baterry dan accu)
Battery merupakan suatu proses pengubahan energi kimia menjadi energi listrik yang berupa sel listrik. Pada dasarnya sel listrik terdiri dari dua buah logam/ konduktor yang berbeda dicelupkan ke dalam larutan maka akan bereaksi secara kimia dan menghasilkan gaya gerak listrik antara kedua konduktor tersebut. Proses pengisian battery dilakukan dengan cara mengalirkan arus melalui sel-sel dengan arah yang berlawanan dengan aliran arus dalam proses pengosongan sehingga sel akan dikembalikan dalam keadaan semula. Battery yang digunakan pada sistem otomatis GenSet berfungsi sebagai sumber arus DC pada starting diesel.
Battery Charger
Alat ini berfungsi untuk proses pengisian battery dengan mengubah tegangan PLN 220V atau dari generator itu sendiri menjadi 12/24 V menggunakan rangkaian penyearah. Battery Charger ini biasanya dilengkapi dengan pengaman hubung singkat (Short Circuit) berupa sekering/ fuse.
Panel ACOS
ACOS (Automatic Change Over Switch) merupakan panel pengendalian generator dan terdapat beberapa tombol yang masing-masing mempunyai fungsi yang berbeda.
Tombol pengontrol operasi Gen Set automatic, antara lain yaitu :
Off, Automatic, Trial Service, Manual Service, Manual Starting, Manual Stoping, Signal Test, Horn Off, Release, Start, Start Fault, Engine Running, Supervision On, Low Oil Pressure, Temperature To High, Generator Over Load.
Sistem Pengaman Genset
Sistem pengaman harus dapat bekerja cepat dan tepat dalam mengisolir gangguan agar tidak terjadi kerusakan fatal. Proteksi pada mesin generator ada dua macam yaitu :
1) Pengaman alarm
Bertujuan memberitahukan kepada operator bahwa ada sesuatu yang tidak normal dalam operasi mesin generator dan agar operator segera bertindak.
2) Pengaman trip
Berfungsi untuk menghindarkan mesin generator dari kemungkinan kerusakan karena ada sistem yang berfungsi tidak normal maka mesin akan stop secara otomatis.
Jenis pengaman trip antara lain :
1) Putaran lebih (over speed)
2) Temperatur air pendingin tinggi
3) Tekanan minyak pelumas rendah
4) Emergency stop
5) Reverse power
Pentanahan (grounding)
a) Pentanahan sistem, pentanahan untuk suatu titik pada penghantar arus dari sistem. Pada umumnya titik tersebut adalah titik netral dari suatu mesin, transformator, atau untuk rangkaian listrik tertentu.
b) Pentanahan peralatan sistem, pentanahan untuk suatu bagian yang tidak membawa arus dari sistem, misalnya : Semua logam seperti saluran tempat kabel, kerangka mesin, batang pemegang sakelar, penutup kotak sakelar.
Relay pengaman pada genset:
a) Relay arus lebih
Thermal Over Load Relay (TOLR) digunakan untuk melindungi motor dan perlengkapan kendali motor dari kerusakan akibat beban lebih atau terjadinya hubungan singkat antar hantaran yang menuju jaring atau antar fasa.
b) Relay tegangan lebih
bekerja bila tegangan yang dihasilkan generator melebihi batas nominalnya.
c) Relay diferensial
bekerja atas dasar perbandingan tegangan atau perbandingan arus, yaitu besarnya arus sebelum lilitan stator dengan arus yang mengalir pada hantaran yang menuju jaring-jaring.
d) Relay daya balik
berfungsi untuk mendeteksi aliran daya aktif yang masuk ke arah generator.
Sekering
berungsi untuk mengamankan peralatan atau instalasi listrik dari gangguan hubung singkat
Jika suatu sekering dilewati arus di atas arus kerjanya, maka pada waktu tertentu sekering tersebut akan lebur (putus). Besarnya arus yang dapat meleburkan suatu sekering dalam waktu 4 jam dibagi arus kerja disebut faktor peleburan berkisar 1 hingga 1,5.
*) Gambar langkah kerja piston pada mesin diesel milik gudangilmu.org
*) Gambar ATS dan AMF milik caturmukti.com
*) Gambar panel ACOS milik tredintechnologies.com
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Saturday, October 24, 2009
Fluksi Medan Magnet, Kuat Medan Magnet dan Kerapatan Fluksi Magnet
Fluksi Medan Magnet - Medan magnet tidak bisa kasat mata namun buktinya bisa diamati dengan kompas atau serbuk halus besi. Daerah sekitar yang ditembus oleh garis gaya magnet disebut gaya medan magnetik atau medan magnetik. Jumlah garis gaya dalam medan magnet disebut fluksi magnetik.
Gambar 1. Belitan kawat berinti udara dan garis-garis gaya magnet.
Menurut satuan internasional besaran fluksi magnetik (Φ) diukur dalam Weber, disingkat Wb dan didefinisikan dengan:
”Suatu medan magnet serba sama mempunyai fluksi magnetik sebesar 1 weber bila sebatang penghantar dipotongkan pada garis-garis gaya magnet tsb selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt”
Weber = Volt x detik
[Φ] = 1 Voltdetik = 1 Wb
Belitan kawat yang dialiri arus listrik DC maka didalam inti belitan akan timbul
medan magnet yang mengalir dari kutub utara menuju kutub selatan, seperti diperlihatkan pada gambar 2.
Gambar 2. Daerah Pengaruh medan magnet.
Pengaruh gaya gerak magnetik akan melingkupi daerah sekitar belitan yang diberikan warna arsir. Gaya gerak magnetik (θ) sebanding lurus dengan jumlah belitan (N) dan besarnya arus yang mengalir (I), secara singkat kuat medan magnet sebanding dengan amper-lilit.
θ = I . N
[θ] = Amper-turn
dimana;
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N = Jumlah belitan kawat
Contoh : Belitan kawat sebanyak 500 lilit, dialiri arus 2 A.
Hitunglah a) gaya gerak magnetiknya b) jika kasus a) dipakai 1000 lilit berapa besarnya arus ?
Jawaban :
a) θ = I . N = 500 lilit x 2 A = 1.000 Ampere-lilit
b) I = θ /N = 1.000 Amper-lilit/1000 lilit = 1 Ampere.
Kuat Medan Magnet- Dua belitan berbentuk toroida dengan ukuran yang berbeda diameternya. Belitan toroida yang besar memiliki diameter lebih besar, sehingga keliling lingkarannya lebih besar. Belitan toroida yang kecil tentunya memiliki keliling lebih kecil. Jika keduanya memiliki belitan (N) yang sama, dan dialirkan arus (I) yang sama maka gaya gerak magnet (Θ = N.I) juga sama. Yang akan berbeda adalah kuat medan magnet (H) dari kedua belitan diatas.
Persamaan kuat medan magnet adalah:
Dimana:
H = Kuat medan magnet
lm = Panjang lintasan
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N= Jumlah belitan kawat
Contoh : Kumparan toroida dengan 6.000 belitan kawat, panjang lintasan magnet 30cm, arus yang mengalir sebesar 200 mA. Hitung besarnya kuat medan magnetiknya
Jawaban :
H = I.N/Im = 0,2 A. 6.000 / 0,3 = 4000 A/m
Kerapatan Fluksi Magnet - Efektivitas medan magnetik dalam pemakaian sering ditentukan oleh besarnya “kerapatan fluksi magnet”, artinya fluksi magnet yang berada pada permukaan yang lebih luas kerapatannya rendah dan intensitas medannya lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluksi magnet akan kuat dan intensitas medannya lebih tinggi.
Kerapatan fluksi magnet (B) atau induksi magnetik didefinisikan sebagai:
“fluksi persatuan luas penampang”
Satuan fluksi magnet adalah Tesla. Persamaan fluksi magnet adalah:
Dimana;
B = Kerapatan medan magnet
Φ = Fluksi magnet
A = Penampang inti
Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya.
Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) = 1,2 mWb
semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Gambar 1. Belitan kawat berinti udara dan garis-garis gaya magnet.
Menurut satuan internasional besaran fluksi magnetik (Φ) diukur dalam Weber, disingkat Wb dan didefinisikan dengan:
”Suatu medan magnet serba sama mempunyai fluksi magnetik sebesar 1 weber bila sebatang penghantar dipotongkan pada garis-garis gaya magnet tsb selama satu detik akan menimbulkan gaya gerak listrik (ggl) sebesar satu volt”
Weber = Volt x detik
[Φ] = 1 Voltdetik = 1 Wb
Belitan kawat yang dialiri arus listrik DC maka didalam inti belitan akan timbul
medan magnet yang mengalir dari kutub utara menuju kutub selatan, seperti diperlihatkan pada gambar 2.
Gambar 2. Daerah Pengaruh medan magnet.
Pengaruh gaya gerak magnetik akan melingkupi daerah sekitar belitan yang diberikan warna arsir. Gaya gerak magnetik (θ) sebanding lurus dengan jumlah belitan (N) dan besarnya arus yang mengalir (I), secara singkat kuat medan magnet sebanding dengan amper-lilit.
θ = I . N
[θ] = Amper-turn
dimana;
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N = Jumlah belitan kawat
Contoh : Belitan kawat sebanyak 500 lilit, dialiri arus 2 A.
Hitunglah a) gaya gerak magnetiknya b) jika kasus a) dipakai 1000 lilit berapa besarnya arus ?
Jawaban :
a) θ = I . N = 500 lilit x 2 A = 1.000 Ampere-lilit
b) I = θ /N = 1.000 Amper-lilit/1000 lilit = 1 Ampere.
Kuat Medan Magnet- Dua belitan berbentuk toroida dengan ukuran yang berbeda diameternya. Belitan toroida yang besar memiliki diameter lebih besar, sehingga keliling lingkarannya lebih besar. Belitan toroida yang kecil tentunya memiliki keliling lebih kecil. Jika keduanya memiliki belitan (N) yang sama, dan dialirkan arus (I) yang sama maka gaya gerak magnet (Θ = N.I) juga sama. Yang akan berbeda adalah kuat medan magnet (H) dari kedua belitan diatas.
Persamaan kuat medan magnet adalah:
Dimana:
H = Kuat medan magnet
lm = Panjang lintasan
θ = Gaya gerak magnetik
I = Arus mengalir ke belitan
N= Jumlah belitan kawat
Contoh : Kumparan toroida dengan 6.000 belitan kawat, panjang lintasan magnet 30cm, arus yang mengalir sebesar 200 mA. Hitung besarnya kuat medan magnetiknya
Jawaban :
H = I.N/Im = 0,2 A. 6.000 / 0,3 = 4000 A/m
Kerapatan Fluksi Magnet - Efektivitas medan magnetik dalam pemakaian sering ditentukan oleh besarnya “kerapatan fluksi magnet”, artinya fluksi magnet yang berada pada permukaan yang lebih luas kerapatannya rendah dan intensitas medannya lebih lemah, sedangkan pada permukaan yang lebih sempit kerapatan fluksi magnet akan kuat dan intensitas medannya lebih tinggi.
Kerapatan fluksi magnet (B) atau induksi magnetik didefinisikan sebagai:
“fluksi persatuan luas penampang”
Satuan fluksi magnet adalah Tesla. Persamaan fluksi magnet adalah:
Dimana;
B = Kerapatan medan magnet
Φ = Fluksi magnet
A = Penampang inti
Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya.
Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) = 1,2 mWb
semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Friday, October 23, 2009
Elektromagnet
Elektromagnet adalah prinsip pembangkitan magnet dengan menggunakan arus listrik. Aplikasi praktisnya kita temukan pada motor listrik, speaker, relay dsb. Sebatang kawat yang diberikan listrik DC arahnya meninggalkan kita (tanda silang), maka disekeliling kawat timbul garis gaya magnet melingkar, lihat gambar 1. Sedangkan gambar visual garis gaya magnet didapatkan dari serbuk besi yang ditaburkan disekeliling kawat beraliran listrik, seperti telah dijelaskan pada artikel sebelumnya “prinsip kemagnetan”.
Gambar 1. Prinsip elektromagnetik.
Sebatang kawat pada posisi vertikal diberikan arus listrik DC searah panah, maka arus menuju keatas arah pandang (tanda titik). Garis gaya magnet yang membentuk selubung berlapis lapis terbentuk sepanjang kawat. Garis gaya magnet ini tidak tampak oleh mata kita, cara melihatnya dengan serbuk halus besi atau kompas yang didekatkan dengan kawat penghantar tsb. Kompas menunjukkan bahwa arah garis gaya sekitar kawat melingkar. Arah medan magnet disekitar penghantar sesuai arah putaran sekrup (James Clerk Maxwell, 1831-1879). arah arus kedepan (meninggalkan kita) maka arah medan magnet searah putaran sekrup kekanan. Sedangkan bila arah arus kebelakang (menuju kita) maka arah medan magnet adalah kekiri.
Gambar 2. Garis magnet membentuk selubung seputar kawat berarus.
Gambar 3. Prinsip putaran sekrup
Aturan sekrup mirip dengan hukum tangan kanan yang menggenggam, dimana arah ibu jari menyatakan arah arus listrik mengalir pada kawat. Maka keempat arah jari menyatakan arah dari garis gaya elektromagnet yang ditimbulkan.
Arah aliran arus listrik DC pada kawat penghantar menentukan arah garis gaya elektromagnet. Arah arus listrik DC menuju kita (tanda titik pada penampang kawat), arah garis gaya elektromagnet melingkar berlawanan arah jarum jam. Ketika arah arus listrik DC meninggalkan kita (tanda silang penampang kawat), garis gaya elektromagnet yang ditimbulkan melingkar searah dengan jarum jam (sesuai dengan model mengencangkan sekrup). Makin besar intensitas arus yang mengalir semakin kuat medan elektro-magnet yang mengelilingi sepanjang kawat tersebut.
Gambar 4. Elektromagnetik sekeliling kawat.
Elektromagnet pada Belitan Kawat
Jika sebuah kawat penghantar berbentuk bulat dialiri arus listrik I sesuai arah panah, maka disekeliling kawat timbul garis gaya magnet yang arahnya secara gabungan membentuk kutub utara dan kutub selatan. Makin besar arus listrik yang melewati kawat, maka akan semakin kuat medan elektromagnetik yang ditimbulkannya.
Gambar 5. Kawat melingkar berarus membentuk kutub magnet
Jika beberapa belitan kawat digulungkan membentuk sebuah coil atau lilitan, dan kemudian dipotong secara melintang maka arah arus ada dua jenis. Kawat bagian atas bertanda silang (meninggalkan kita) dan kawat bagian bawah bertanda titik (menuju kita).
Gambar 6. Belitan kawat membentuk kutub magnet.
Hukum Tangan Kanan
Hukum tangan kanan untuk menjelas kan terbentuknya garis gaya elektromagnet pada sebuah gulungan atau coil dapat dilihat pada gambar 7. Dimana sebuah
gulungan kawat coil dialiri arus listrik, maka arah arusnya ditunjukkan sesuai dengan empat jari tangan kanan, sedangkan kutub magnet yang dihasilkan ditunjukkan dengan ibu jari untuk arah kutub utara dan kutub selatan arah lainnya.
Gambar 7. Hukum tangan kanan.
Untuk menguatkan medan magnet yang dihasilkan pada gulungan dipasangkan inti besi dari bahan ferromagnet, sehingga garis gaya elektromagnet menyatu. Aplikasinya dipakai pada coil kontaktor atau relay.
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Gambar 1. Prinsip elektromagnetik.
Sebatang kawat pada posisi vertikal diberikan arus listrik DC searah panah, maka arus menuju keatas arah pandang (tanda titik). Garis gaya magnet yang membentuk selubung berlapis lapis terbentuk sepanjang kawat. Garis gaya magnet ini tidak tampak oleh mata kita, cara melihatnya dengan serbuk halus besi atau kompas yang didekatkan dengan kawat penghantar tsb. Kompas menunjukkan bahwa arah garis gaya sekitar kawat melingkar. Arah medan magnet disekitar penghantar sesuai arah putaran sekrup (James Clerk Maxwell, 1831-1879). arah arus kedepan (meninggalkan kita) maka arah medan magnet searah putaran sekrup kekanan. Sedangkan bila arah arus kebelakang (menuju kita) maka arah medan magnet adalah kekiri.
Gambar 2. Garis magnet membentuk selubung seputar kawat berarus.
Gambar 3. Prinsip putaran sekrup
Aturan sekrup mirip dengan hukum tangan kanan yang menggenggam, dimana arah ibu jari menyatakan arah arus listrik mengalir pada kawat. Maka keempat arah jari menyatakan arah dari garis gaya elektromagnet yang ditimbulkan.
Arah aliran arus listrik DC pada kawat penghantar menentukan arah garis gaya elektromagnet. Arah arus listrik DC menuju kita (tanda titik pada penampang kawat), arah garis gaya elektromagnet melingkar berlawanan arah jarum jam. Ketika arah arus listrik DC meninggalkan kita (tanda silang penampang kawat), garis gaya elektromagnet yang ditimbulkan melingkar searah dengan jarum jam (sesuai dengan model mengencangkan sekrup). Makin besar intensitas arus yang mengalir semakin kuat medan elektro-magnet yang mengelilingi sepanjang kawat tersebut.
Gambar 4. Elektromagnetik sekeliling kawat.
Elektromagnet pada Belitan Kawat
Jika sebuah kawat penghantar berbentuk bulat dialiri arus listrik I sesuai arah panah, maka disekeliling kawat timbul garis gaya magnet yang arahnya secara gabungan membentuk kutub utara dan kutub selatan. Makin besar arus listrik yang melewati kawat, maka akan semakin kuat medan elektromagnetik yang ditimbulkannya.
Gambar 5. Kawat melingkar berarus membentuk kutub magnet
Jika beberapa belitan kawat digulungkan membentuk sebuah coil atau lilitan, dan kemudian dipotong secara melintang maka arah arus ada dua jenis. Kawat bagian atas bertanda silang (meninggalkan kita) dan kawat bagian bawah bertanda titik (menuju kita).
Gambar 6. Belitan kawat membentuk kutub magnet.
Hukum Tangan Kanan
Hukum tangan kanan untuk menjelas kan terbentuknya garis gaya elektromagnet pada sebuah gulungan atau coil dapat dilihat pada gambar 7. Dimana sebuah
gulungan kawat coil dialiri arus listrik, maka arah arusnya ditunjukkan sesuai dengan empat jari tangan kanan, sedangkan kutub magnet yang dihasilkan ditunjukkan dengan ibu jari untuk arah kutub utara dan kutub selatan arah lainnya.
Gambar 7. Hukum tangan kanan.
Untuk menguatkan medan magnet yang dihasilkan pada gulungan dipasangkan inti besi dari bahan ferromagnet, sehingga garis gaya elektromagnet menyatu. Aplikasinya dipakai pada coil kontaktor atau relay.
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Thursday, October 22, 2009
Prinsip Kemagnetan
Garis Gaya Magnet - Pada sebuah magnet sebenarnya merupakan kumpulan jutaan magnet ukuran mikroskopik yang teratur satu dan lainnya. Kutub utara dan kutub selatan magnet posisinya teratur (lihat gambar 3). Secara keseluruhan kekuatan magnetnya menjadi besar. Logam besi bisa menjadi magnet secara permanen (tetap) atau bersifat megnet sementara dengan cara induksi elektromagnetik. Tetapi ada beberapa logam yang tidak bisa menjadi magnet, misalnya tembaga dan aluminium, dan logam tersebut dinamakan diamagnetik.
Bumi merupakan magnet alam raksasa, dapat dibuktikan dengan alat yang dinamakan kompas, dimana jarum penunjuk pada kompas akan menunjukkan arah utara dan selatan bumi kita, seperti diperlihatkan pada gambar 1. Karena sekeliling bumi sebenarnya dilingkupi garis gaya magnet yang tidak tampak oleh mata kita tapi bisa diamati dengan kompas keberadaannya.
Gambar 1. Pola garis medan magnet permanen.
Batang magnet memancarkan garis gaya magnet yang melingkupi dengan arah dari utara ke selatan. Pembuktian sederhana dilakukan dengan menempatkan batang magnet diatas selembar kertas, kemudian diatas kertas tersebut ditaburkan serbuk halus besi secara merata, yang terjadi adalah bentuk garis-garis dengan pola melengkung oval diujung-ujung kutub. Ujung kutub utara-selatan muncul pola garis gaya yang kuat. Daerah netral pola garis gaya magnetnya lemah.
Bagian netral magnet artinya tidak memiliki kekuatan magnet. Untuk membuktikan bahwa daerah netral tidak memiliki kekuatan magnet. Ambil beberapa sekrup besi, amatilah tampak sekrup besi akan menempel baik diujung kutub utara maupun ujung kutub selatan. Daerah netral dibagian tengah sekrup tidak akan menempel sama sekali, dan sekrup akan terjatuh.
Gambar 2. Daerah netral pada magnet permanen.
Mengapa besi biasa berbeda logam magnet ? Pada besi biasa sebenarnya terdapat kumpulan magnet-magnet dalam ukuran mikroskopik, tetapi posisi masing-masing magnet tidak beraturan satu dengan lainnya sehingga saling menghilangkan sifat kemagnetannya, lihat gambar 3.
Gambar 3. Perbedaan besi biasa dan magnet permanen.
Arah garis gaya magnet dengan pola garis melengkung mengalir dari arah kutub utara menuju kutub selatan. Didalam batang magnet sendiri garis gaya mengalir sebaliknya, yaitu dari kutub selatan ke kutub utara. Didaerah netral tidak ada garis gaya diluar batang magnet. Pembuktian secara visual garis gaya magnet untuk sifat tarik menarik pada kutub berbeda dan sifat tolak-menolak pada kutub sejenis dengan menggunakan magnet dan serbuk halus besi, gambar 4. Tampak jelas kutub sejenis utara-utara garis gaya saling menolak satu dan lainnya. Pada kutub yang berbeda utara-selatan, garis gaya magnet memiliki pola tarik menarik. Sifat saling tarik menarik dan tolak menolak magnet menjadi dasar bekerjanya motor listrik.
Gambar 4a. Pola garis medan magnet tolak-menolak dan 4b. pola garis medan magnet tarik-menarik.
Gambar 5. Garis medan magnet Utara-Selatan.
Untuk mendapatkan garis gaya magnet yang merata disetiap titik permukaan maka ada dua bentuk yang mendasari rancangan mesin listrik. Bentuk datar (flat) akan menghasilkan garis gaya merata setiap titik permukaannya. Bentuk melingkar (radial), juga menghasilkan garis gaya yang merata setiap titik permukaannya.
Gmbar 6. Garis gaya magnet pada permukaan rata dan silinder.
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Bumi merupakan magnet alam raksasa, dapat dibuktikan dengan alat yang dinamakan kompas, dimana jarum penunjuk pada kompas akan menunjukkan arah utara dan selatan bumi kita, seperti diperlihatkan pada gambar 1. Karena sekeliling bumi sebenarnya dilingkupi garis gaya magnet yang tidak tampak oleh mata kita tapi bisa diamati dengan kompas keberadaannya.
Gambar 1. Pola garis medan magnet permanen.
Batang magnet memancarkan garis gaya magnet yang melingkupi dengan arah dari utara ke selatan. Pembuktian sederhana dilakukan dengan menempatkan batang magnet diatas selembar kertas, kemudian diatas kertas tersebut ditaburkan serbuk halus besi secara merata, yang terjadi adalah bentuk garis-garis dengan pola melengkung oval diujung-ujung kutub. Ujung kutub utara-selatan muncul pola garis gaya yang kuat. Daerah netral pola garis gaya magnetnya lemah.
Bagian netral magnet artinya tidak memiliki kekuatan magnet. Untuk membuktikan bahwa daerah netral tidak memiliki kekuatan magnet. Ambil beberapa sekrup besi, amatilah tampak sekrup besi akan menempel baik diujung kutub utara maupun ujung kutub selatan. Daerah netral dibagian tengah sekrup tidak akan menempel sama sekali, dan sekrup akan terjatuh.
Gambar 2. Daerah netral pada magnet permanen.
Mengapa besi biasa berbeda logam magnet ? Pada besi biasa sebenarnya terdapat kumpulan magnet-magnet dalam ukuran mikroskopik, tetapi posisi masing-masing magnet tidak beraturan satu dengan lainnya sehingga saling menghilangkan sifat kemagnetannya, lihat gambar 3.
Gambar 3. Perbedaan besi biasa dan magnet permanen.
Arah garis gaya magnet dengan pola garis melengkung mengalir dari arah kutub utara menuju kutub selatan. Didalam batang magnet sendiri garis gaya mengalir sebaliknya, yaitu dari kutub selatan ke kutub utara. Didaerah netral tidak ada garis gaya diluar batang magnet. Pembuktian secara visual garis gaya magnet untuk sifat tarik menarik pada kutub berbeda dan sifat tolak-menolak pada kutub sejenis dengan menggunakan magnet dan serbuk halus besi, gambar 4. Tampak jelas kutub sejenis utara-utara garis gaya saling menolak satu dan lainnya. Pada kutub yang berbeda utara-selatan, garis gaya magnet memiliki pola tarik menarik. Sifat saling tarik menarik dan tolak menolak magnet menjadi dasar bekerjanya motor listrik.
Gambar 4a. Pola garis medan magnet tolak-menolak dan 4b. pola garis medan magnet tarik-menarik.
Gambar 5. Garis medan magnet Utara-Selatan.
Untuk mendapatkan garis gaya magnet yang merata disetiap titik permukaan maka ada dua bentuk yang mendasari rancangan mesin listrik. Bentuk datar (flat) akan menghasilkan garis gaya merata setiap titik permukaannya. Bentuk melingkar (radial), juga menghasilkan garis gaya yang merata setiap titik permukaannya.
Gmbar 6. Garis gaya magnet pada permukaan rata dan silinder.
Semoga bermanfaat,
HaGe – http://dunia-listrik.blogspot.com
Friday, October 16, 2009
Reverse Power Relay
Reverse power biasanya digunakan untuk menjelaskan mengenai fenomena perubahan unjuk kerja dari generator menjadi motor.
jadi dalam kejadian ini, sebuah generator yang tadinya menghasilkan daya listrik, berubah menjadi menggunakan daya listrik, dengan kata lain generator menjadi motor listrik. Hal ini bisa terjadi karena pada dasarnya antara generator dan motor memiliki konstruksi yang sama dan jika:
1. generator dihubungkan paralel atau bergabung dalam suatu jaringan dengan generator lain.
2. torsi yang dihasilkan oleh penggerak mula (prime mover, dalam hal ini misalkan turbin uap, turbin air, atau mesin diesel) lebih kecil dari torsi yang dibutuhkan untuk menjaga agar kecepatan rotornya berada pada kecepatan proporsionalnya (dengan referensi frekuensi sistem).
3. terjadi kehilangan torsi dari penggerak mulanya (dengan kata lain penggerak mulanya seperti turbin atau mesin diesel "TRIP" atau mengalami kegagalan operasi) dan generator masih terhubung dengan jaringan. Karena masih ada kecepatan sisa pada rotornya, sedangkan disisi statornya ada tegangan dari jaringan, sehingga tegangan di stator menginduksi ke lilitan rotor yang berputar.
Dampak reverse power adalah sebagai berikut:
1. untuk diesel generator dapat terjadi ledakan pada ruang bakarnya karena adanya akumulasi bahan bakar yang tak terbakar sedangkan rotor terus berputar,
2. pada gas turbin juga akan merusak gearbox nya dan
3. pada hydro plant (turbin air) akan terjadi kavitasi.
Inti dari semuanya, jika terjadi reverse power pada suatu unit pembangkit listrik adalah terjadi kerusakan pada peralatan penggerak mulanya (prime mover) atau turbinnya. oleh karena itu pada generator dipasang relay reverse power sebagai pengamannya, dan biasanya interlock dengan generator CB nya.
reverse power relay bekerja dengan mengukur komponen aktif arus beban, I x cos φ.
Ketika Generator beroperasi dan menghasilkan daya listrik maka komponen arus beban I x cos φ bernilai positif, sedangkan dalam kondisi reverse power maka komponen beban aktif I x cos φ akan berubah menjadi bernilai negatif. Dan jika nilai negatif ini melampaui set point dari relay, maka relay reverse power akan bekerja dan beberapa saat kemudian memerintahkan Circuit breaker untuk membuka.
Semoga bermanfaat,
*** HaGe *** http://dunia-listrik.blogspot.com
jadi dalam kejadian ini, sebuah generator yang tadinya menghasilkan daya listrik, berubah menjadi menggunakan daya listrik, dengan kata lain generator menjadi motor listrik. Hal ini bisa terjadi karena pada dasarnya antara generator dan motor memiliki konstruksi yang sama dan jika:
1. generator dihubungkan paralel atau bergabung dalam suatu jaringan dengan generator lain.
2. torsi yang dihasilkan oleh penggerak mula (prime mover, dalam hal ini misalkan turbin uap, turbin air, atau mesin diesel) lebih kecil dari torsi yang dibutuhkan untuk menjaga agar kecepatan rotornya berada pada kecepatan proporsionalnya (dengan referensi frekuensi sistem).
3. terjadi kehilangan torsi dari penggerak mulanya (dengan kata lain penggerak mulanya seperti turbin atau mesin diesel "TRIP" atau mengalami kegagalan operasi) dan generator masih terhubung dengan jaringan. Karena masih ada kecepatan sisa pada rotornya, sedangkan disisi statornya ada tegangan dari jaringan, sehingga tegangan di stator menginduksi ke lilitan rotor yang berputar.
Dampak reverse power adalah sebagai berikut:
1. untuk diesel generator dapat terjadi ledakan pada ruang bakarnya karena adanya akumulasi bahan bakar yang tak terbakar sedangkan rotor terus berputar,
2. pada gas turbin juga akan merusak gearbox nya dan
3. pada hydro plant (turbin air) akan terjadi kavitasi.
Inti dari semuanya, jika terjadi reverse power pada suatu unit pembangkit listrik adalah terjadi kerusakan pada peralatan penggerak mulanya (prime mover) atau turbinnya. oleh karena itu pada generator dipasang relay reverse power sebagai pengamannya, dan biasanya interlock dengan generator CB nya.
reverse power relay bekerja dengan mengukur komponen aktif arus beban, I x cos φ.
Ketika Generator beroperasi dan menghasilkan daya listrik maka komponen arus beban I x cos φ bernilai positif, sedangkan dalam kondisi reverse power maka komponen beban aktif I x cos φ akan berubah menjadi bernilai negatif. Dan jika nilai negatif ini melampaui set point dari relay, maka relay reverse power akan bekerja dan beberapa saat kemudian memerintahkan Circuit breaker untuk membuka.
Semoga bermanfaat,
*** HaGe *** http://dunia-listrik.blogspot.com
Thursday, October 15, 2009
kode angka dalam sistem kelistrikan
Dalam single-line diagram (diagram garis tunggal) suatu sistem instalasi, maka akan kita jumpai kode-kode angka pada keterangan gambarnya, hal ini dimaksudkan untuk mempermudah kita dalam membuat penamaan suatu peralatan.
Adalah ANSI (American National Standards Institute) yang membuat standarisasi kode angka tersebut. Kode angka yang tertera, kadang ditambahkan juga dengan huruf alphabet yang akan memberikan keterangan tambahan, sebagai contoh kode 51G yang berarti untuk OverCurrent Ground Relay, lalu 50N yang mengindikasikan alat Ground Sensitive OverCurrent Relay dengan rujukan pembacaan arus Netralnya, dan ada juga 87T yang artinya untuk peralatan Differential Relay yang digunakan pada Transformator.
Berikut daftar dari kode-kode angka tersebut:
1 - Master Element
2 - Time Delay Starting or Closing Relay
3 - Checking or Interlocking Relay
4 - Master Contactor
5 - Stopping Device
6 - Starting Circuit Breaker
7 - Anode Circuit Breaker
8 - Control Power Disconnecting Device
9 - Reversing Device
10 - Unit Sequence Switch
11 - Reserved for future application
12 - Overspeed Device
13 - Synchronous-speed Device
14 - Underspeed Device
15 - Speed - or Frequency, Matching Device
16 - Reserved for future application
17 - Shunting or Discharge Switch
18 - Accelerating or Decelerating Device
19 - Starting to Running Transition Contactor
20 - Electrically Operated Valve
21 - Distance Relay
22 - Equalizer Circuit Breaker
23 - Temperature Control Device
24 - Over-Excitation Relay (V/Hz)
25 - Synchronizing or Synchronism-Check Device
26 - Apparatus Thermal Device
27 - Undervoltage Relay
28 - Flame Detector
29 - Isolating Contactor
30 - Annunciator Relay
31 - Separate Excitation Device
32 - Directional Power Relay
33 - Position Switch
34 - Master Sequence Device
35 - Brush-Operating or Slip-Ring Short-Circuiting, Device
36 - Polarity or Polarizing Voltage Devices
37 - Undercurrent or Underpower Relay
38 - Bearing Protective Device
39 - Mechanical Conduction Monitor
40 - Field Relay
41 - Field Circuit Breaker
42 - Running Circuit Breaker
43 - Manual Transfer or Selector Device
44 - Unit Sequence Starting Relay
45 - Atmospheric Condition Monitor
46 - Reverse-phase or Phase-Balance Current Relay
47 - Phase-Sequence Voltage Relay
48 - Incomplete Sequence Relay
49 - Machine or Transformer, Thermal Relay
50 - Instantaneous Overcurrent or Rate of Rise, Relay
51 - AC Time Overcurrent Relay
52 - AC Circuit Breaker
53 - Exciter or DC Generator Relay
54 - High-Speed DC Circuit Breaker
55 - Power Factor Relay
56 - Field Application Relay
57 - Short-Circuiting or Grounding (Earthing) Device
58 - Rectification Failure Relay
59 - Overvoltage Relay
60 - Voltage or Current Balance Relay
61 - Machine Split Phase Current Balance
62 - Time-Delay Stopping or Opening Relay
63 - Pressure Switch
64 - Ground (Earth) Detector Relay
65 - Governor
66 - Notching or Jogging Device
67 - AC Directional Overcurrent Relay
68 - Blocking Relay
69 - Permissive Control Device
70 - Rheostat
71 - Level Switch
72 - DC Circuit Breaker
73 - Load-Resistor Contactor
74 - Alarm Relay
75 - Position Changing Mechanism
76 - DC Overcurrent Relay
77 - Pulse Transmitter
78 - Phase-Angle Measuring or Out-of-Step Protective Relay
79 - AC Reclosing Relay
80 - Flow Switch
81 - Frequency Relay
82 - DC Reclosing Relay
83 - Automatic Selective Control or Transfer Relay
84 - Operating Mechanism
85 - Carrier or Pilot-Wire Receiver Relay
86 - Lockout Relay
87 - Differential Protective Relay
88 - Auxiliary Motor or Motor Generator
89 - Line Switch
90 - Regulating Device
91 - Voltage Directional Relay
92 - Voltage and Power Directional Relay
93 - Field Changing Contactor
94 - Tripping or Trip-Free Relay
95 - Reluctance Torque Synchrocheck
96 - Autoloading Relay
Semoga bermanfaat,
*** HaGe *** http://dunia-listrik.blogspot.com
Adalah ANSI (American National Standards Institute) yang membuat standarisasi kode angka tersebut. Kode angka yang tertera, kadang ditambahkan juga dengan huruf alphabet yang akan memberikan keterangan tambahan, sebagai contoh kode 51G yang berarti untuk OverCurrent Ground Relay, lalu 50N yang mengindikasikan alat Ground Sensitive OverCurrent Relay dengan rujukan pembacaan arus Netralnya, dan ada juga 87T yang artinya untuk peralatan Differential Relay yang digunakan pada Transformator.
Berikut daftar dari kode-kode angka tersebut:
1 - Master Element
2 - Time Delay Starting or Closing Relay
3 - Checking or Interlocking Relay
4 - Master Contactor
5 - Stopping Device
6 - Starting Circuit Breaker
7 - Anode Circuit Breaker
8 - Control Power Disconnecting Device
9 - Reversing Device
10 - Unit Sequence Switch
11 - Reserved for future application
12 - Overspeed Device
13 - Synchronous-speed Device
14 - Underspeed Device
15 - Speed - or Frequency, Matching Device
16 - Reserved for future application
17 - Shunting or Discharge Switch
18 - Accelerating or Decelerating Device
19 - Starting to Running Transition Contactor
20 - Electrically Operated Valve
21 - Distance Relay
22 - Equalizer Circuit Breaker
23 - Temperature Control Device
24 - Over-Excitation Relay (V/Hz)
25 - Synchronizing or Synchronism-Check Device
26 - Apparatus Thermal Device
27 - Undervoltage Relay
28 - Flame Detector
29 - Isolating Contactor
30 - Annunciator Relay
31 - Separate Excitation Device
32 - Directional Power Relay
33 - Position Switch
34 - Master Sequence Device
35 - Brush-Operating or Slip-Ring Short-Circuiting, Device
36 - Polarity or Polarizing Voltage Devices
37 - Undercurrent or Underpower Relay
38 - Bearing Protective Device
39 - Mechanical Conduction Monitor
40 - Field Relay
41 - Field Circuit Breaker
42 - Running Circuit Breaker
43 - Manual Transfer or Selector Device
44 - Unit Sequence Starting Relay
45 - Atmospheric Condition Monitor
46 - Reverse-phase or Phase-Balance Current Relay
47 - Phase-Sequence Voltage Relay
48 - Incomplete Sequence Relay
49 - Machine or Transformer, Thermal Relay
50 - Instantaneous Overcurrent or Rate of Rise, Relay
51 - AC Time Overcurrent Relay
52 - AC Circuit Breaker
53 - Exciter or DC Generator Relay
54 - High-Speed DC Circuit Breaker
55 - Power Factor Relay
56 - Field Application Relay
57 - Short-Circuiting or Grounding (Earthing) Device
58 - Rectification Failure Relay
59 - Overvoltage Relay
60 - Voltage or Current Balance Relay
61 - Machine Split Phase Current Balance
62 - Time-Delay Stopping or Opening Relay
63 - Pressure Switch
64 - Ground (Earth) Detector Relay
65 - Governor
66 - Notching or Jogging Device
67 - AC Directional Overcurrent Relay
68 - Blocking Relay
69 - Permissive Control Device
70 - Rheostat
71 - Level Switch
72 - DC Circuit Breaker
73 - Load-Resistor Contactor
74 - Alarm Relay
75 - Position Changing Mechanism
76 - DC Overcurrent Relay
77 - Pulse Transmitter
78 - Phase-Angle Measuring or Out-of-Step Protective Relay
79 - AC Reclosing Relay
80 - Flow Switch
81 - Frequency Relay
82 - DC Reclosing Relay
83 - Automatic Selective Control or Transfer Relay
84 - Operating Mechanism
85 - Carrier or Pilot-Wire Receiver Relay
86 - Lockout Relay
87 - Differential Protective Relay
88 - Auxiliary Motor or Motor Generator
89 - Line Switch
90 - Regulating Device
91 - Voltage Directional Relay
92 - Voltage and Power Directional Relay
93 - Field Changing Contactor
94 - Tripping or Trip-Free Relay
95 - Reluctance Torque Synchrocheck
96 - Autoloading Relay
Semoga bermanfaat,
*** HaGe *** http://dunia-listrik.blogspot.com
Subscribe to:
Posts (Atom)